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ABSTRACT

To create immersive Virtual Reality (VR) applications and training
environments, an appropriate method for allowing participants to
interact with the virtual environments and objects in that scene must
be considered. An approach which offers increased immersion and
accurately models real-world behaviour would be advantageous —
particularly within the areas of health, entertainment and engineer-
ing. Traditional consumer VR methods for facilitating interaction —
e.g.controllers — are restricted by lack of tactile feed back and do not
accurately represent real-world interactions with physical objects in
terms of shape, limiting immersion. Ideally, physical objects would
be transported into the virtual world and used as a means of interact-
ing with the environment, via a robust tracking algorithm or motion
capture system. However, achieving this in a real time markerless
manner for a range of object types remains an open challenge. More-
over, costly motion capture systems or tracking algorithms which
require multiple cameras are not practical for everyday VR use.

Given the recent advancements in object tracking and mesh recon-
struction using neural networks, we present a novel neural network,
VRProp-Net+, which predicts rigid and articulated model param-
eters of known everyday objects in unconstrained environments
from RGB images at interactive frame rates. VRProp-Net+ utilises
a novel synthetic training methodology and so does not require
a time consuming capture or manual labelling procedure seen in
many prominent neural network tracking or mesh reconstruction
approaches. We present our network as part of an egocentric track-
ing framework, that allows prediction of object pose and shape
given a moving camera. This scenario is helpful for practical VR
experiences where the camera may be mounted on the VR Head
Mounted Display (HMD) itself. This creates a dynamic capture
volume, allowing a user to move around and interact with a virtual
world without the need for multiple fixed cameras.

Index Terms: Computing methodologies—Neural networks
Computing methodologies—Modelling and simulation Computing
methodologies—Computer vision

1 INTRODUCTION

The method of interaction in a VR experience greatly influences the
feeling immersion and the perceived realism. An intuitive approach
engages the user in the virtual world and promotes realistic and
natural interaction with the computer generated elements in the scene.
Moreover, such an approach has much potential use in VR training
environments, where the simulated procedure must closely model
the real-world task. In this work we move towards an end to end
system for bringing everyday objects into VR, while simultaneously
allowing users to move around the environment, without requiring
costly and impractical set ups — e.g. motion capture systems.
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Figure 1: The pose and shape of a rigid or articulated object are
predicted from RGB images captured from a moving egocentric
view using VRProp-Net+. The predicted parameters transform a

model which is rendered into a CG scene, allowing interaction with
virtual objects via their physical counterpart.

Most consumer VR systems use controllers to allow communica-
tion with elements of the virtual world [4,20]. However, controllers
do not accurately model real-world interactions with physical objects
and, moreover, are restricted by lack of tactile feedback. External
sensors can be attached to the surface of an object in order to track
its 3D position and orientation [5,28,36]. However, they are unable
to capture any non-rigid or articulated behaviour. On the other hand,
markers tracked by a motion capture system can be used to control
rigid and non-rigid models [28, 35]. Despite their advantages, the
non-standard hardware required makes these systems expensive and
their tracking accuracy decreases when the markers are occluded,
for example due to hand interactions with the object.

Alternatively, rigid or non-rigid objects can be tracked in RGB
or RGBD images and used to drive rigged models [23,27,32,34].
However, this is still a challenging task, in particular for articulated
or non-rigid objects whose appearance can change greatly due to de-
formations. Neural network based approaches for object tracking or
mesh reconstruction have shown great advancement in recent years
and have much potential for capturing the behaviour of complex
articulated and non-rigid objects [7, 10,26,29,29,37,42]. However,
many approaches are restricted by requiring multiple cameras, man-
ually labelled data or are constrained to non real-time applications.
Additionally, object tracking approaches for VR are often limited to
controlled, green screen environments [29,30].

In this paper, we propose a neural network solution for tracking
known rigid and articulated objects in order to interact with their vir-
tual counterparts. We colour our objects brightly to aid tracking but
are not restricted to requiring multiple object view points, controlled
environments or training on manually labelled data. Our custom



architecture VRProp-Net+, which is trained on a synthetic dataset,
advances on VRProp-Net [29] and is able to predict the parameters
of the rigid or articulated model with higher accuracy.

We also present an extension to VRProp-Net+ that tracks an
object in a moving camera such that it may be used within a complete
egocentric tracking framework. In a VR experience it is useful to
attach a camera to the HMD so that it captures the part of the object
which the user is focused on and allows a dynamic capture volume
which is not restricted to a pre-defined space. Unlike previous works
which have focused on tracking hand pose or have explored the
interaction between hands and rigid objects, we predict both the
shape and pose of rigid and articulated objects [9,17,22,31].

2 RELATED WORK

Interacting with Virtual Objects: Controllers are the most fre-
quently used tool for interacting with virtual (i.e computer generated)
objects and environments. Sequences of button presses and clicks on
the controller as well as the 3D pose — from more sophisticated con-
trollers (e.g the HTC Vive [4] or the Oculus Rift [20] controllers) —
can be used to control elements of the virtual environment or change
the shape, pose or appearance of objects in that scene. In contrast,
Augmented Reality (AR) systems (e.g the HoloLens [15] or Magic
Leap [13]) often use hand gestures to interact with the computer
generated elements. While controllers and hand gestures facilitate
interaction with the virtual environment, they offer limited immer-
sion as they provide minimal tactile feedback and do not model the
natural manner of interacting with a physical object.

An alternative, potentially more immersive approach, is to control
the behaviour of virtual objects using physical objects. Thus, mod-
elling real-world interactions as well as providing tactile feedback.
Several commercial VR systems offer external sensors, which track
the 6DoF pose of the object to which they are attached [4, 28, 36].
While these offer accurate rigid tracking, they do not capture any
object articulations or non-rigid deformations. Additionally, they
are obtrusive attachments which can change the weight and shape of
the object which they are appended to. Markers can also be attached
to the surface of an object and tracked using a motion capture sys-
tem [28, 35]. The tracked pose of the markers can be used to control
arigid object or deform a non-rigid or articulated model. However,
the reliability of marker-based approaches decreases when markers
are occluded, which could occur when a user is interacting with
an object. Moreover, motion capture systems require non-standard
hardware and so are an expensive solution. Our work uses standard
hardware and does not require additional attachments.

On the other hand, a physical object can be tracked in RGB
or RGBD data using detected feature on the surface of an object,
without the need for additional markers [23,27,32,34]. Many of the
state of the art approaches, though fast and accurate enough for VR,
only consider tracking rigid objects and do not adapt well to objects
which can deform [14,32,34]. In contrast, we consider both rigid and
articulated objects. Rather than just determining the 6DoF pose of
an object, the shape can be calculated by fitting a non-rigid model to
the RGB or RGBD data [6,8,11,33]. Novel approaches from Tsoli et
al. [33] and Zhang et al. [41] consider hand and non-rigid object
tracking as a joint task. Tsoli ez al.’s [33] work demonstrates the
potential of jointly optimising hand pose and non-rigid object pose
and shape but is not fast enough for VR applications. In contrast,
Zhang et al.’s [41] InteractionFusion solution is suitable for real-
time use. In their approach, they use two RGBD cameras which must
be calibrated. In contrast, our work uses a single RGBD camera.

Neural networks: Neural networks have been used successfully
for tracking objects, as well as for predicting model parameters
for rigid and non-rigid objects [10, 29, 30, 42]. Works such as
PoseCNN [39] and PVNet [24] demonstrate accurate 6DoF pose
predictions from RGB images, even in complex, uncontrolled en-
vironments [1,21,38,40]. However, these approaches only predict

rigid parameters and assume the objects which they are tracking are
rigid. Thus, the prediction accuracy decreases if an object under-
goes a deformation. In this paper, we propose a network which can
predict parameters of articulated models as well as rigid parameters.

Neural networks can be used to capture non-rigid deformations by
predicting non-rigid or articulated model parameters, vertex offsets
or voxels [7,10,26,29,30,37,42]. Kanazawa et al. [7] use a network
consisting of an encoder and discriminator to predict the shape
and pose of a human mesh, as well as the camera pose, from a
single RGB image. Similarly, Zuffi e/ al. [42] use a convolutional
network to recover the camera pose and the shape and pose of a
zebra mesh from a single image. However, both these approaches,
and many of the other state of the art works, are trained on manually
labelled data. This is time consuming, and sometimes difficult to
obtain for an arbitrary object. In contrast, we train our network on
synthetic data and provide a method for automatically generating
large datasets for arbitrary objects without the need for manual
labelling. Wang et al. [37] also train their network — which predicts
an object’s deformation given an external force — on synthetic data
generated using a physics engine. When combined with a GAN,
they are able to predict an object’s deformation — in the form of a
voxel grid — from a depth map. While this network can accurately
predict physical deformations, it is unable to recover the 6DoF
pose of the object. Taylor et al. [29,30] design a neural network
based pipeline — VRProp-Net — for using physical objects to control
the behaviour of virtual objects. While they can recover rigid or
articulated parameters for a chosen object they are limited to green
screen environments and require the use of green gloves. In our
work, we extend this method and remove the need for such strict
constraints.

Egocentric Tracking: A tracking approach in which the camera
pose is fixed has a restricted capture volume. On the other hand,
using a moving egocentric viewpoint where the camera is attached
to the VR HMD, creates a dynamic capture volume suitable for
practical VR experiences. An egocentric view has been used for
accurately tracking hand or hand and object pose [9, 17,22, 31].
Kapadis et al. [9] present a network for hand and object detection
and action recognition in egocentric views. However, the objects
are simply detected in the 2D image and no 3D pose information
is recovered. For our application, it is not enough to simply track
the object, the network must recover the shape and pose. In contrast,
Tekin et al. [31] predict the 3D pose of hand and objects from an
egocentric view. Similarly, Pandey et al. [22] predict the 6DoF pose
of a controller captured from a pair of stereo monochrome cameras,
such as those found on a HMD. However, these approaches do not
extend to non-rigid objects. In our work, we predict the shape and
pose of rigid and articulated objects from egocentric views.

3 APPROACH

This section will outline our approach for using physical objects
to interact with virtual objects or VR props [29,30]. Section 3.1
describes the offline procedure for generating the synthetic data and
Section 3.2, explains how the data is processed before being used
for network training. Our network architecture — VRProp-Net+ —
is discussed in Section 3.3, before, in Section 3.4, showing how
this network can be used to make predictions on real-world data for
known objects. In Section 3.5, we present an approach for adding a
moving camera into our system and carrying out egocentric tracking.
Finally, we describe the implementation details in Section 3.6.

3.1 Synthetic Dataset Generation

For each VR prop, we generate a synthetic dataset. This allows
large amounts of data to be obtained quickly for an arbitrary object,
without a time consuming manual capture process [1,2,16,26].
We model our chosen props using a linear blend shape model
which can be manually sculpted and rigged or, using Taylor et
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Figure 2: VRProp-Net+: A segmented image is input to the network and the predicted pose and shape parameters returned. The MSE of
the Euclidean distance between the ground truth and predicted values is calculated for each branch. The predicted parameters can be used to
update the virtual model and the predicted silhouette rendered differentiably. An L1 loss between the ground truth and predicted silhouettes is
used as a reprojection error. The total error is backpropagated through the network.

al’s [30] pipeline, generated automatically from a 3D scan of the
object. The object is deformed by randomly varying the model
parameters and a synthetic RGB image rendered for each frame.
As discussed by Taylor et al. [30], depth data could be used as
an alternative. However, the state of the art methods which use
depth data are either unable to recover pose due to ambiguities for
certain objects [25,37] or are not suitable for real-time use [12].
On the other hand DynamicFusion [19] and VolumeDeform [6] are
able to capture non-rigid behaviour in real-time from RGBD data.
However, DynamicFusion cannot recover from model failure or lost
tracking and VolumeDeform often fails when the deformation is
large. Moreover, the addition of depth in the training data increases
processing time and decreases frame rate.

The rigid (or pose) parameters of the model are the 3D position,
T = [T;,T;,T;], and the rotation, R3,3. These can be randomly
varied with the constraint that the object must fall within the view
port of the virtual camera, VP. Thus, to vary the 3D position of
the object we simply chose a point T € VP. The orientation of the
object can be changed by sampling the angle of rotation around the
X,Y,Z axes, roty, roty, rot;, from a uniform distribution in the range
(0,27). These can be combined to a single 3 x 3 rotation matrix by
multiplying together the individual matrices which rotate around the
individual x,y, z axes, R = Ry (rot, )R, (rot,)R;(rot;).

In a blend shape model a deformation, v,,,, can be modelled
as a linear combination of the n basis vectors (i.e blend shapes),
b = [bg,...,b,], and the neutral pose, V.., as expressed in the
following equation.

n
View = Yneutral + Z w;b;. (D
i=1

i=

Thus, we take the articulated (or shape) parameters to be the blend
shape weights w = [wy,wy,...,w,], which are uniformly sampled
between (0, 1). For each frame, the new parameters are used to
update the virtual object’s pose and shape and an RGB image of the
scene is rendered. The virtual camera parameters are set equal to
those of the physical camera so that the real and synthetic images
are as similar as possible. While we use a moving camera in our
experiments on real data, in the dataset generation we assume that
the camera position and orientation is fixed at the origin.

3.2 Image Processing

Our network is trained on synthetic data but at run-time must make
predictions on real data. Thus, to minimise the differences between
these two datasets the images are first processed, by segmenting and

flattening the colours and then cropping the image, before being
input to the network. We propose a robust Gaussian Mixture Model
(GMM) based approach for the image processing which is not re-
stricted to controlled green screen environments. The chosen objects
are textured brightly with distinct colours to aid tracking.

To begin, a GMM, which consists of K Gaussian distributions, as
defined in Equation 2, is fit to each coloured section of the tracked
object using the expectation maximisation (EM) algorithm.

1 1 Te_
/(X|u,2):mexp(—§(x—u) z I(X—#)> (2)

where X is a random variable, p;, € RX is the mean of the kth
Gaussian and I, € RK*K is the covariance. Once the GMMs have
been learnt, they remain constant throughout the tracking.

To segment and flatten an image, each pixel, x, is tested using the
Mabhalanobis distance (Equation 3) to see if it belongs to any of the
learnt distributions.

Dy(x) =/ (x— ) TE(x—p). ©)

If D is below a chosen threshold, D < g, then the pixel belongs
to that distribution. The value of € is selected experimentally. To
segment the image, any pixels which do not belong to any of the
GMMs are assumed to be background pixels and so are removed.
The flattening stage removes any colour variations within object
sections which may arise to lighting variations. This is done by
setting all pixels which fall into the same GMM to a constant value.

To increase the efficiency of the processing algorithm and reduce
the effect of background noise, we do not test every single pixel in
each frame to determine if it belongs to any of the GMMs. Instead,
for each object section, we test pixels within a region of interest
(ROJ). To determine the ROI for a section, we first find a bounding
box around the segmented section in the previous frame. We take the
assumption that the position of the section in the image does not vary
greatly between frames and obtain the ROI by simply increasing the
dimensions of the bounding box, as demonstrated in Figure 3.

Finally, the segmented and flattened image, I, is cropped around
the centre of the tracked object, obtaining a square input for the
network. We take the object centre to be the 2D centroid, calculated
from the non-zero pixels.

3.3 VRProp-Net+

We propose a novel CNN based architecture, VRProp-Net+ (see
Fig. 2) that is used to predict the pose, P, and shape, §, parameters



Frame: f-1

(a) Segmented region. (b) Bounding box. (c) Region of interest.
Figure 3: Finding the ROI of the red section in frame f. A bounding
box is calculated around the segmented region in the previous frame

(f — 1) and then the dimensions increased to find the ROI in f.

of VR props from RGB images, 1
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where p = [1?1’] R 2 ..,,IQ3,3] are the entries of the rotation ma-
trix and § = [Wy, Wy, ..., W,] are the weights of the blend shape model.

VRProp-Net+ takes in a processed image and passes it through
an encoder, consisting of the basic blocks of VRProp-Net [29]. The
encoder layers are then followed by a batch normalisation, producing
a feature vector. As in the work by Zuffi et al. [42], our network
has a separate branch for the pose and shape predictions. The shape
prediction branch takes the feature vector as an input and passes
it to a ReLu and then linear layer. This returns shape parameters.
Similarly, the feature vector is passed into the the pose prediction
layer, which again passes it through a ReLu and linear layer. In this
instance, the pose parameters are returned. The network is trained,
separately for each object, using the loss

L=L;+ Lp + CLrp (5)

where Ly is the shape loss, L, is the pose loss and L, is the
reprojection loss. The variable ¢ is a constant which we determined
experimentally. The shape loss, L, is defined as the mean square
error (MSE) between the ground truth and predicted blend weights.
Similarly, the pose loss, Lp, is the MSE between the ground truth and
predicted rotation matrix entries. Finally, we have the reprojection
loss, Lyp, which measures the difference between the silhouette
of the ground truth and predicted mesh. Using the predicted pose
and shape parameters, the virtual object can be deformed and the
predicted silhouette can be differentiably rendered using Kato et
al.’s [10] neural mesh renderer (NMR). The NMR approximates
rasterisation such that it has a gradient which can be back-propagated
through a network, making it suitable for use within a network loss
function. Thus, L,, can be found to be the LI-loss between the
ground truth and the predicted silhouette. After each epoch, the loss
is back-propagated through the network to update the parameters
weights, until the error converges or falls below a chosen threshold.

3.4 Real world predictions

Once trained, VRProp-Net+ can predict the pose and shape param-
eters of a known physical object in RGB images, captured from a
single RGBD camera. In turn, the predicted parameters can update
the behaviour of a computer generated model in the VR environment.

As with the synthetic data, the RGB image is segmented and
flattened. The depth map can be segmented using the processed
RGB image as a mask and then both the RGB images and depth map
cropped around the 2D object centroid. The 3D position of the object
is found by back-projecting the centroid using the camera intrinsic
matrix. The processed image is input to VRProp-Net+ which returns
the predicted parameters and these used alongside the calculated 3D
position to deform the virtual model.

As noted in the work by Taylor et al. [30], the change in shape and
pose between two subsequent frames only varies a little. Therefore,
to increase the speed of the algorithm, a prediction is made only for
a set of key frames and the parameters interpolated between these.
The orientation is smoothed using spherical linear interpolation and
the blend shape weights and 3D position averaged over the current

and previous 2 frames. Thus, while the network does not make
predictions in real-time, the overall tracking framework is able to
run at interactive rates.

3.5 Egocentric Object Tracking

We will now discuss a method to allow our network to make predic-
tions from a moving egocentric view (i.e a sensor attached to a HMD)
such that it may be used within an egocentric tracking framework.
To do so, we ensure that the method correctly differentiates between
camera and object movements. Within our dataset generation, we
fix the camera position to (0,0,0), and set the orientation to be the
3 x 3 identity matrix, I3 (i.e. the virtual camera is not rotated). Thus,
we can consider that the predicted object pose from VRProp-Net+
is within a camera coordinate system - defined by the camera pose.
The shape prediction is independent of coordinate system.

We begin by finding the 3D position and orientation of the moving
camera in world space. To define the world coordinate system,
we place fiducial markers in the tracking volume. These markers
have known pose and are arranged in a plane, the centre of which
we choose as our world origin. The addition of multiple markers
allows the camera pose to be found even if some of the markers are
occluded. In our implementation, we use Aruco fiducial makers [3]
as these allow fast and accurate identification. Using the plane of
marker, the camera pose in the world coordinate system can be
quickly calculated. The details the algorithm used can be found in
Garrido-Jurado et al.’s [3] original paper.

The camera pose in world space can be used to update the camera
frame. As the object pose is relative to the camera pose, the object
pose is transformed into world space by performing a coordinate
transform into the new camera frame. The orientation of the object
is transformed by simply rotating it into the updated coordinate
system. For the position, we must rotate into the new frame as well
as translating by the change in origin position between frames. The
pose of the object in world space, alongside the predicted shape
parameters, can be used to update the virtual model. This in turn can
be rendered into the VR application or experience.

3.6 Implementation Details

We tested our system on 4 VR props: a rigid cube, a rigid cup, an
articulated ‘pizza’ and an articulated sponge (see Fig. 5). The rigid
objects were represented by triangular meshes and the articulated
objects were blend shape models, each with 2 blend shapes. The
objects were coloured brightly to aid tracking and prevent symmetry.

Dataset generation: A dataset was generated for each object
in Unity, as discussed in Section 3.1. Our virtual camera is mod-
elled on an Intel Realsense D435 sensor and so has parameters
f = [622.084,622.154] and u = [426.034,245.07]. The images are
rendered with dimensions (848 x 480) and cropped to (384 x 384).

Image processing: To segment and flatten the tracked object, a
GMM with K = 2 clusters was learnt for each object section and
the threshold for the Mahalanobis distance was selected through
experimentation as € = 2. We chose 2 clusters so that the GMM
can appropriately model the variation that can occur on a section
of the same colour due to shading and lighting, while keeping the
segmentation algorithm fast and efficient.

Network: VRProp-Net+ was implemented in Pytorch and trained
on a desktop computer with an NVIDIA GeForce GTX 1070 GPU
and an Intel(R) Core(TM) i7-6800K CPU @ 3.40GHz. We use
Adam optimiser with a learning rate of le —4. In our training proce-
dure, the non-rigid parameters are standardised with the condition
that the mean blend weight is 0 and the standard deviation is 1. The
network is trained separately for each object. We chose the loss con-
stant, ¢ = 0.5, as through experimentation found that this provided
the highest accuracy predictions.

Real world predictions and egocentric Tracking: We capture
our physical objects with an Intel Realsense D435 RGBD sen-
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Figure 4: Comparison of the Euclidean distance, d, between real and predicted silhouettes for VRProp-Net [29] vs VRProp-Net+.

sor which was attached to the HMD of an Oculus Rift. We use
Aruco [18] within OpenCV as the chosen fiducial marker library.

4 RESULTS AND DISCUSSION

In this section, we demonstrate and discuss the results of our ap-
proach on several rigid and articulated objects. We begin by com-
paring the prediction accuracy of our VRProp-Net+ architecture
against the closest work in literature which considers both rigid and
articulated objects, VRProp-Net [29], for fixed camera sequences.
We also show egocentric object tracking for our chosen objects.
Fixed camera: For each object, we trained VRProp-Net and
VRProp-Net+ and used the trained network to make predictions on
unseen synthetic sequences. The predicted parameters were used
to deform the blend shape model and the root mean square (RMS)
error between the predicted model vertices and the ground truth mesh
vertices from the synthetic sequence calculated for each network.

Object | Object Type | VRProp-Net [29] | VRProp-Net+
Sponge | Articulated 0.428 0.409
Pizza Articulated 0.681 0.618
Box Rigid 0.160 0.125
Cup Rigid 0.581 0.423

Table 1: Comparison of the average RMS error (cm) for a synthetic
sequence of 100 frames between VRProp-Net [29] and our VRProp-
Net+ for a range of rigid and articulated objects.

Table 1 shows our network was consistently able to make higher
accuracy predictions than VRProp-Net for the range of rigid and
articulated objects. The outputs of the 2 networks on real-data
can also be compared (see Fig. 4). These tests were carried out in
green screen environments as required by Taylor et al.’s [29, 30]
work. However, our approach can make predictions in more complex
scenes (see Fig. 5). Again, we see that visually both networks make
appropriate predictions for the range of objects. The Euclidean
Distance, d, between the real object silhouette and the silhouette
of the predicted mesh can be calculated to evaluate how closely
the reconstruction matches the input. We find that the predicted
meshes in our network are slightly closer to the ground truth than
VRProp-Net. Moreover, our system has a mean frame rate of 20 ps,
which is faster than Taylor ez al.’s [29,30] frame rate of 15f ps.

We have textured our objects brightly to aid tracking, while sev-
eral state-of-the art works are able to track objects using their natural
texture [7,39]. However, we are not limited to using manually la-
belled training data and can track both rigid and articulated objects.

Egocentric tracking: Finally, we demonstrate our egocentric
tracking approach by testing our pipeline on sequences which con-
tain a moving camera and a moving rigid or articulated object (as
seen in Fig. 5). We see that for each object, our approach can accu-
rately predict its shape and pose, even without green screens, and
can correctly distinguish between camera movements and object
movements. Moreover, our results demonstrate that with a mov-
ing egocentric view the capture volume need not be restricted to a
pre-selected area defined by multiple fixed cameras. Instead, the

capture volume is dynamic, with the only constraint being that at
least one fiducal marker is reliably detected in the camera image. In
future work, a valuable exploration could be carried out into how
the robustness of the pose and shape prediction is affected by the
size of the capture volume. In our work we have used markers to
find the object pose, allowing us to have a complete framework
for egocentric rigid and articulate object tracking. However, we
acknowledge that a key future task would be removing the markers
and determining the camera pose using features of the scene.

5 CONCLUSION

In this paper we have proposed a neural network based tracking
system with the goal of allowing computer generated objects in
virtual environments to be controlled using physical objects. We
also present an egocentric tracking solution in which the camera
can be attached to a HMD. The moving egocentric view creates a
dynamic capture volume, allowing our system to be used in practi-
cal, everyday VR environments without the need for multiple fixed
cameras tracking the object. We demonstrate our method on several
rigid and articulated objects and show both fast and accurate track-
ing results. In addition, our network — VRProp-Net+ — achieved
higher accuracy predictions than the state of the art methods for
transporting real objects into virtual environments and, with our
proposed segmentation algorithm, is not restricted to controlled (e.g.
green screen) environments. As a future task, the system can be
extended to include multiple objects and the human-object interac-
tions as well as the object-object interaction explored. In our work,
we have represented our articulated objects as blend shape models.
However, in order to include a variation of objects with a variety of
non-rigid behaviours into a VR scene, different models (e.g finite
element meshes or rigged skeletons) could be used instead and the
parameters of these models learnt by a network.
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