An Immersive Virtual Environment for Teleoperation of Remote Robotic
Agents for Everyday Applications in Prohibitive Environments

Alireza Tavakkoli*
Department of Computer Science and Engineering
University of Nevada, Reno

ABSTRACT

There are currently important limitations in allowing for a more effi-
cient man-machine collaboration in environments hostile to human
presence. An immersive and intuitive user interface has the potential
to bridge the gap between the human and the robot he/she is tasked
to operate in the remote environment. In this work, we propose a
novel architecture that allows for collecting large amount of sensory
data to build models of the world and its inhabitants and present
this information to the teleoperator of the robot. This environment
maintain interfaces that are intuitive to the operator and accurately
represents the robot’s real-world state and environment. The pro-
posed game client is capable of handling multiple users, much like
a traditional multiplayer game, while visualizing multiple robotic
agents operating within the real world. A set of user studies are
conducted to validate the performance of the proposed architecture
compared to traditional tele-robotic applications. The experimental
results show significant improvements in both task completion time
and task completion rate over traditional tools.

Index Terms: Human-centered computing—Interaction para-
digms—Virtual reality—; Embedded and cyber-physical systems—
Robotics—External interfaces for robotics

1 INTRODUCTION

The tele-operation of robotic platforms plays a vital role in space
exploration, military reconnaissance, undersea operations, robotic
surgery, training of personnel, and search and rescue operations in
unsafe locations. Despite the push for more autonomous robotic
agents, tele-operation will still be necessary as a “default mode”
for users, both to fix and to prevent errors caused by autonomous
behavior as well as to boost the user’s trust of the robot agent [3]. In
addition, the task of robot tele-operation will become more common-
place as more and more viable robotic platforms become affordable
and mainstream [5]. However, this can be a difficult task with tra-
ditional robot control schemes due to information overload for the
end-user with complex scenes [6].

In order to provide enough information to operators to effectively
and efficiently control a robot remotely, the end user must have
access to real-world visual odometry, positional and environment
map data, as well as any laser range finder, sonar, or other sensor data
used by the robot for obstacle detection and localization. In addition,
this data is further increased when multiple collaborative robots are
considered. Traditional robot control schemes employ simple user
interfaces to display information as a Heads-Up Display (HUD) [3].
This traditional user interface is used to both offer information about
the robot’s current state as well as the state of its environment.

*e-mail: tavakkol @unr.edu
fe-mail: wilsonbj@uhv.edu
*e-mail: boundsm@uhv.edu

Brandon Wilson®
Department of Computer Science
University of Houston-Victoria

Matthew Bounds*
Department of Computer Science
University of Houston-Victoria

Games are traditionally thought of as a non-scientific medium of
entertainment [7]. However, under the hood games are an immersive
medium rendered through 3D virtual environments. In addition,
these mediums are becoming more and more immersive through the
advent of Virtual Reality (VR) Head-Mounted Displays (HMD’s).
Furthermore, these HMD’s are becoming more and more commer-
cially available [4]. VR will play an increasingly important role in
tele-operation due to the synergy between robots and VR technol-
ogy [2]. VR provides the user with increased immersion and enables
the user to interact directly with their environment in an intuitive
way. In addition, the robot provides a source of force feedback to
any given tele-operation system. In theory, as an immersive and 3D
medium capable of intuitive user interaction, a VR-enabled game is
an ideal medium for the tele-operation of remote robotic platforms.
However, there are many problems that must be addressed in order
to utilize a game as a user interface for robot tele-operation. Below,
we present the main contributions of this paper that addresses the
outlining challenges of an effective immersive virtual environment
useful for teleoperation of remote robotic agent.

1.1 Contributions

Fig. 1 shows the big picture behind the proposed system. In order to
enable this system, we proposed four main contributions as outlined
below:

Game Engine Integration: A range of new functionalities includ-
ing, computer vision, robotics control frameworks, and parallel
processes in support of the entire system are introduced and
added to the base Unreal Engine 4 game engine in order to
enable controlling of remote physical agents.

Heterogeneous Architecture: This architecture provides easy in-
tegration of robot clients and their unique robot interfaces
into a GPU-accelerated High Performance Computing (HPC)
server and an end-user dynamic and immersive virtual reality.
The architecture allows for the offloading of computationally-
intensive tasks to the HPC server, which facilitates commu-
nications between the end-user’s UE4 game client and the
real-world robot platform in order to place users virtually in
the same environment as the robot to interact with both the
robot and it’s environment. User input is then translated to
real-world actuators on the robot platform.

Networking Communication: A crossplatform networking API,
called CrossSock has been developed as a result of this work
[1], as a header-only and cross-platform API. CrossSock allows
for the integration of a breadth of robotic platforms as well
as the integration with all of the platforms that the proposed
architecture supports for the end-user interface.

Dynamic Level Generation: The proposed VR-Telerobotic plat-
form is designed to operate in a fully observable environment
that has been scanned beforehand. We automatically generate
walls and rooms for the end-user to explore. To add immersion,
an In-Game Editor (IGE) has been provided in the end-user
game interface for the manipulation of the world.

Render to HMID—

"" \ |
L1 _Tradiﬁonal

A
Ly Network
Communication

ﬂ Environment

Unreal
\ﬁ Engine Data
q
A\ 4
1 7
Commands Network

End User% Z
k

Virtual

Robot Platforms

T e

Communication

Figure 1: The big picture: The proposed architecture is comprised of two real and one virtual environment, bridging the gap between the remote

robot and its teleoperator.

2 THE PROPOSED IMPLEMENTATION
2.1 The CrossSock Networking API

As discussed earlier, in order to provide a framework for robot
platforms a networking system needs to be utilized as a common
language between the robot platforms, the centralized HPC server,
and the end-user game clients.

To meet these challenges, the CrossSock networking library has
been developed and made open to the public [1]. CrossSock was
developed based on Berkeley sockets, which is dependent only on
system calls. CrossSock supports both the Windows-based WinSock
and UNIX-based POSIX libraries and wraps them under a single
API, allowing for cross-platform source code. In addition, the Cross-
Sock library is type-safe and object-oriented, which provides a more
user-friendly environment for developing network-enabled applica-
tions.

CrossSock is a header-only library. As such, it allows for easy
integration into any new or existing project. CrossSock also pro-
vides several system utilities and a high-level packet implementation.
Finally, CrossSock provides an event-based client-server architec-
ture for easily developing network applications from scratch. The
low-level socket classes and the high-level client-server classes are
separate. Therefore, developers can include only those CrossSock
features they need for their projects.

The current CrossSock implementation employs simple, ad-
justable timers to control the rate at which various data is updated
to the server and client machines/computers. It does not, however,
dynamically adjust these time values based on current network band-
width usage. CrossSock monitors all connected entities and ensures
that they are alive/responsive, allowing for client re-connections
within a specific time window. But when a client is connected and
requests or broadcasts data, it is sent in a greedy fashion to the tar-
get as soon as possible. In a future version of CrossSock, network
bandwidth and latency handling, along with encryption, is planned.

2.1.1 Client-Server Architecture

The proposed architecture is split into three major network compo-
nents. a High-Performance Computing (HPC) server provides GPU-
enabled services. Robotic agents are included in the architecture
through the Robot Operating By ITself (ROBIT) client framework.
Finnaly, an end-user game client is provided via Unreal Engine 4
(UE4), which may include multiple ROBIT actors.

2.2 Proposed System Results

In this section we present views of the proposed architecture in
action, starting with normal usage in an office hallway shown in
Fig. 3(a). In this figure, the PatrolBot is being driven manually down
a hall. The environment is known, and is visualized around the
robot. The spheres displayed in the virtual environment represent
the real-world readings from the robot in real-time from its LRF
and sonar sensors. In addition to the environmental data, the current
’throttle’ (normalized speed) of the robot is displayed behind it as a
percentage. The robots name is shown hovering above its current
location.

Fig. 3(b) shows the optional distance sensor (LRF and sonar)
visualizations as a raycast in the virtual environment from the robot
to its final location. This visualization can be enabled on the current
robot whenever the proximity warnings are not enough for manual
piloting. Next, Fig. 4(a) demonstrates the Architecture’s ability
to automatically path the robot from its original location to any
reachable location in the mapped environment. In this figure, red
waypoints show the path’s segments, and the final green waypoints
represents the robots goal.

Obstacle visualization is shown in Fig. 4(b). The circled section is
an unknown obstacle not reflected in the map data, which is visible
on the stereo camera. In the current implementaiton of the proposed
architecture, this type of unknown obstacle is visualized as free-
floating proximity warnings. If an obstacle is of known origin (e.g. a
bench or other type of encountered objects), the mesh for the object
is placed within the environment.

In certain applications, the environmental conditions are outside
of the operators’ control. Moreover, there may be scenarios in which
parts or all of a sensory system may fail whilst the robot and its
operator are performing a task. One such scenario is the sudden
loss of visual condition or camera input. The proposed architecture
has significant benefit over traditional control mechanisms in such
situations, as shown in Fig. 5. Here, the robot is navigating a maze
in the real-world environment. During this operation, the lights are
on, but suddenly are turned off is shown. In traditional applications,
such loss of sensory data would amount to the entire operation’s
failure. However, since this environmental condition does not alter
the structure of environment, human operator takes control of the
robot’s operation within the Virtual Environment to bring the task to
completion.

2.3 Human Performance and Usability Study

To validate the benefits and usability of the proposed architecture,
a human usability study is designed, in which human subjects are

Overview of the VETO Architecture’s Three Major Components

User Environment HPC Server Robot Agent
l—CrossSock—l liCrossSock—l
CrossClient CrossServer CrossClient —
Stereo Pair
A 7 { A
Distance_| | Commands Sensor Data
Readings
Real World Virtual User's Proximity 0 Image Compression
Environment Actions Warnings ROBIT Client
Sensor User I Stereo Pair
v Data __ Actions Goal
Map) FlyCapture 2 / Triclops
UE4 Game Generation Forwarding Path Following Stereo Camera SDK

Figure 2: An overview of the three major components of the proposed architecture of Virtual Environment for Tele-Operation (VETO).

Figure 3: A robot being driven automatically, and visualization of the
laser range finder sensor on the robot (right).

Figure 4: A robot being driven automatically with the proposed ar-
chitecture through path planning and following(left), and an unknown
obstacle visualized as a proximity warning(right).

asked to perform two structured tasks remotely via a robotic agent,
as described below.

The Navigation Task: In the first task, called Navigation, the sub-
ject is asked to navigate a robot through a maze. There are
several physical and non-physical hazard zones populating
the maze. The subject are given 20 minutes to complete the
navigation. The time it takes to completely navigate the maze,
as well as the number of physical and non-physical (hazard
zone) hits are recorded for each subject.

The Exploration Task: In the second task, called Exploration, the
subject is asked to explore the office corridors to find three
symbols placed randomly within the environment. Again, the
subject, is given 20 minutes to find all three symbols. The time
to complete the task, as well as the number of symbols found
by the subject are recorded.

Figure 5: The virtual environment, as seen with the lights on (left) and
lights off (right).

3 MEeTHODS
3.1 Study Population

Institutional research ethics approval was obtained prior to the
study’s implementation. There are 25 subjects in this round of
the study. Participants are among students, staff, and faculty at
the University of Houston-Victoria. 44% of the participants are
female and 56% are male. 36% of participants are younger than
24 years, 40% are between 25 and 34, and 24% are older than 35
years. The study participants are quite diverse, including African
American (12%), Asian (24%), Hispanic (32%), and White (24%)
ethnic groups. About 8% of the participants did not declare their eth-
nicity. Participants’ highest degree earned was High School (28%),
Associate (16%), Bachelor’s (28%), Master’s (8%), and Doctoral
(20%).

3.2 Experiment Setup

A prospective, randomized, repeated measures study design was
used in which participants complete 2 sessions of the study: (1)
Virtual Reality (VR) treatment session that utilized the proposed VR
architecture to operate a remote robot, and (2) Regular Operated
Vehicle (ROV) control session that utilized regular user interfaces
and a monitor to control the robot. In order to counterbalance the
study, participants were randomly assigned one of the two sessions
first and asked to returned to participate in the other session after a
period of 30 days has passed. The period between sessions is set to
be more than 30 days to reduce the treatment effect on participants.

In each session participants were asked to complete the following

(b)

Figure 6: (a)- The ROV session view while the subject is performing a
navigation task. (b)- The VR view as seen by a subject performing an
exploration task.

task:

Navigation: The subject is asked to navigate a robot through a
maze populated by several physical and non-physical hazard
zones within 20 minutes. Dependent variables are the time it
takes to completely navigate the maze (7,,,), the number of
physical hits (/1,ys), and the number of non-physical hazard
zone hits (hp,;).

3.3 Instrument

We designed a 5-question instrument to validate the performance of
the proposed VR-mediated teleoperation framework and to compare
its performance with traditional user interfaces. Questions Q1, Q2,
and Q5, marked with *, were designed to validates the proposed sys-
tem with respect to traditional interfaces. As such, we hypothesize
that there will be no statistically significant difference in responses

for these questions. Questions Q3 and Q4, marked with T, were
designed to show the benefit of the proposed interfaces compared
to traditional teleoperation interfaces. We hypothesize that VR-
mediated interface score significantly lower on Q3 and significantly
higher on Q4.

Q1*:
Q2*:
Q3':
Q4*:
Q5*:

The interfaces were intuitive for me to use.

The interfaces were user friendly.

I had trouble completing the tasks with the remote robot.

The quality of the visual feedback was good.

I believe the robot completed all of the tasks that I had dele-
gated or commanded using available interfaces.

3.4 Statistics

We evaluated the performance of the immersive virtual reality in-
terfaces with traditional telerobotic interfaces using both inferential
and descriptive statistics. For the inferential statistics we used a
two-way analysis of variance (ANOVA). These analyses validated
the reliability of the proposed immersive VR interfaces with the
traditional teleoperation systems and their superior performance.

In order to validate the proposed VR-mediated teleoperation in-
terface, we designed the proposed 5-item instrument to compare
traditional teleoperation interfaces with the proposed architecture.
Ql, Q2, and QS5 aim to distinguish usability and reliability of the pro-
posed interfaces compared with traditional interfaces. We evaluate
the following three hypotheses:

H1: There is no statistically significant difference on Q1 answers
for the ROV and VR conditions.
There is no statistically significant difference on Q2 answers
for the ROV and VR conditions.
There is no statistically significant difference on QS answers

for the ROV and VR conditions.

H2:

H3:

Table 1: Validation of VR-mediated User Interface for Telerobotics
(N = 48).

VR ROV ANOVA
M SD M SD F P d
Q1 4375 0.679 4292 1.085 0.094 0.760 1
Q2 4333 1.014 4333 0.580 le”' 1.000 1
Q3 1418 0.428 2.167 1.362 7.543 0.009 1
Q4 4208 0.607 3.333 0.754 13.506 0.001 1
Q5 4792 0.259 4.625 0418 0984 0326 1
Table 2: Validation of VR-mediated User Interface for Telerobotics
(N = 48).
VR ROV ANOVA
M SD M SD F P d
Time 630 151 750 218 4925 0.031 1
Hit, 0.13 0.34 0.88 1.33 7.179 0.012 1
Hit), 0.08 0.28 2375 1.64 45683 1le® 1

In order to demonstrate the effectiveness of the proposed VR-
mediated teleoperation interface over traditional interfaces. We
evaluate the following five hypotheses:

H4: There is a statistically significant difference on Q3 answers for
the ROV and VR conditions.

There is a statistically significant difference on Q4 answers for
the ROV and VR conditions.

There is a statistically significant difference in navigation time
between the ROV and VR conditions.

There is a statistically significant difference in the number of
physical hits between the ROV and VR conditions.

There is a statistically significant difference in the number of
hazard hits between the ROV and VR conditions.

H5:
He6:
H7:

HS:

4 DISCUSSIONS

Table 1 and Table 2 present the results of both the inferential and
descriptive statistical analyses performed on both the VR and the
ROV conditions.

4.1 Interface Validation

The proposed immersive VR interfaces for teleoperation are valid as
compared with traditional interfaces in intuitiveness, usability, and
friendliness. In particular, we found that there were no statistically
significant difference between the VR-mediated and traditional in-
terfaces based on Q1, Q2, and Q5, i.e., participants responded that
both interfaces were interfaces were intuitive for to use and user
friendly, and that robot the completed all of the tasks using both
types of interfaces.

4.2 Interface Effectiveness

The proposed immersive VR interfaces were statistically superior in
terms of performance and effectiveness compared to the traditional
interfaces. In particular we found the five hypotheses (H4-H8) to be
validated:

For H4, a repeated measures single-factor analysis of variance
(ANOVA) revealed a statistically significant difference by interface
design for difficulty completing tasks, F = 7.543, p = .009. VR
interfaces scored significantly lower than traditional interfaces on
the user having difficulty completing tasks.

For HS, a repeated measures single-factor analysis of variance
(ANOVA) revealed a statistically significant difference by interface

design on quality of visual feedback, F = 13.506,p = .001. VR
interfaces scored significantly higher than traditional interfaces on
the quality of visual feedback.

For H6, a repeated measures single-factor analysis of variance
(ANOVA) revealed a statistically significant difference by interface
design for completion time, F = 4.925,p = .031. VR interfaces
scored significantly lower than traditional interfaces on the task
completion time.

For H7, a repeated measures single-factor analysis of variance
(ANOVA) revealed a statistically significant difference by interface
design on the number of physical hits, F = 7.179,p = .012. VR
interfaces scored significantly lower than traditional interfaces on
the number of times that the operator hit a physical object while
operating the robot.

For HS, a repeated measures single-factor analysis of variance
(ANOVA) revealed a statistically significant difference by interface
design on the number of hazard zone hits, F = 45.683,p = 107 8.
VR interfaces scored significantly lower than traditional interfaces
on the number of times that the operator hit a hazard zone while
operating the robot.

5 CONCLUSIONS AND FUTURE WORK

This paper presented an integrated architecture for an interactive
and immersive virtual reality environment for tele-robotics and tele-
presence applications. The proposed system utilizes a two-tier client-
server architecture comprising of a computational server and a multi-
tude of heterogeneous clients ranging from the virtual reality clients
to robotics remote operational clients. A human usability study is
designed to evaluate and validate the performance of the proposed
architecture with the current robotic tele-operation tools. The study
shows improvements in both the speed of task completion as well as
the task completion accuracy.

The design of the proposed architecture is extensible, and as
such supports a range of applications and research projects. One
of the future direction of this work is to create a mechanism to
utilize the sensory data from the robotics agents to build the virtual
environments in real-time. In addition, we are investigating more
intuitive means of interaction with the remotely operated robots by
mapping natural hand and body gestures onto the operational modes
of the robotic agents via a hierarchical activity-intent recognition
model.

ACKNOWLEDGMENTS

This material is based upon work supported by the U.S. Army Re-
search Laboratory and the U. S. Department of Defense under grant
numbers W911NF-15-1-0024 and W911NF-15-1-0455. This sup-
port does not necessarily imply endorsement by the DoD.

REFERENCES

[1] Brandon Wilson. Crosssock. gitHub, 2017.

[2] G. C. Burdea. Invited review: the synergy between virtual reality and
robotics. IEEE Transactions on Robotics and Automation, 15(3):400—
410, 1999.

[3] J. Y. Chen, E. C. Haas, and M. J. Barnes. Human performance issues
and user interface design for teleoperated robots. IEEE Transactions
on Systems, Man, and Cybernetics, Part C (Applications and Reviews),
37(6):1231-1245, 2007.

[4] R. A. Earnshaw. Virtual reality systems. Academic press, NY, 2014.

[5] R.Nickerson. Pioneering the personal robotics industry. In IEEE Inter-
national Conference on Technologies for Practical Robot Applications,
2009, pp. 179-185. IEEE, IEEE, NY, 2009.

[6] C. W. Nielsen, M. A. Goodrich, and R. W. Ricks. Ecological inter-
faces for improving mobile robot teleoperation. IEEE Transactions on
Robotics, 23(5):927-941, 2007.

[7] D. Oblinger. Simulations, games, and learning. ELI White Paper, 1(1),
2006.

	Introduction
	Contributions

	The Proposed Implementation
	The CrossSock Networking API
	Client-Server Architecture

	Proposed System Results
	Human Performance and Usability Study

	Methods
	Study Population
	Experiment Setup
	Instrument
	Statistics

	Discussions
	Interface Validation
	Interface Effectiveness

	Conclusions and Future Work

