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ABSTRACT

One of the most significant challenges facing virtual reality expe-
riences is the virtual world being misaligned from the real-world
environment. This makes problems arise if a user ventures too far
outward - if the virtual world is larger, then the user is at risk of
running into walls in the real world, and, conversely, if the real
world is larger, the user is at risk of running through virtual walls. In
this study, we examined the second case to figure out the best prac-
tice for handling such scenarios. After reviewing how commercial
experiences handle these events, we implemented ten techniques.
We then conducted a user study, grading each method on comfort,
intuitiveness, and immersion. We present results that provide strong
evidence for a blend of a few techniques, none of which are yet
popularly employed by commercial games.

Index Terms: H.5.2 [Information Systems]: Information Inter-
faces and Presentation—User Interfaces; 1.3.7 [Computer Graphics]:
Three-Dimensional Graphics and Realism—Virtual reality

1 INTRODUCTION

Camera-Geometry Interpenetration (CG]I) is the issue in virtual en-
vironments where the camera can pass through simulated objects
and walls without collision. In desktop environments, this issue
commonly occurs when controlling a ”3rd person” camera that is
aimed at an object. As the camera is moved, it may clip through
geometry. A solution to this problem, if needed, is to simply keep
the camera from clipping through the use of collision detection. The
problem also occurs in virtual reality (VR), in the case of a tracked
head-mounted display. User may move their head along a trajectory
in the real world that in the virtual world moves the camera through
geometry. As large-area 6-degree-of freedom, walk-around virtual
reality (VR) systems using head-mounted displays (HMD) have
become commonly available and applied to commercial games, such
as those for the HTC Vive and Oculus Rift systems, this issue is
becoming more pronounced. Furthermore, the solution of preventing
interpenetration by moving the camera is ill-advised, as this may
result in discomfort and nausea for users. Thus, the default solution
may be to allow the camera to clip through walls, particularly when
the application does not suffer from it.

However, there are several important cases where CGI could lead
to undesirable results. Virtual reality has a long history of being
used for training purposes, in addition to gaming and psychology
applications. CGI is an issue in all these cases. First, it may cause
a break in presence, particularly if the user accidentally causes
CGI (e.g. by backing up into a wall they didn’t realize was there).
For psychological applications, this abrupt change may be very
concerning. Second, for immersive gaming, CGI is a threat to
fairness and general game design. If a user has the ability to hide
behind geometry and not be shot or peer through walls that should
be opaque they will likely do so to gain an advantage. Similarly,
when used for training, a virtual experience should be as realistic as
possible and not allow — deliberately or inadvertently — trainees to
leave the virtual boundaries.

Addressing this issue is generally challenging. For example, one
commonly implemented solution is to turn the HMD screen com-
pletely black when CGI occurs, so the user cannot see anything on
the other side until they return. However, the user may struggle to
find their way back. This may also be a jarring change from the
virtual world, reducing presence. Another solution is to prevent the
user from escaping at all, by moving the virtual world as the user
approaches the wall. While less intuitive, something like this would
always keep the user within the confines of the virtual walls. But
this introduces another issue of preserving the virtual space. If a
user keeps walking into a wall and it keeps moving back, they would
eventually reach the edge of the tracking space. If the user had no
means of repositioning themselves within their space (for example,
through teleportation) then they would have no good way to reset
the space and re-center themselves. Furthermore, some solutions
may be highly application dependent. For example, a single-player
experience might care more about presence than a competitive mul-
tiplayer game, which care more about fairness. Some applications
may be fine with moving the virtual space, while others might abso-
lutely require it to be preserved. Others may choose a metaphor that
is consistent with the application (e.g. the user is a ’ghost”).

To add clarity to the issue of CGI in immersive virtual reality, we
began evaluating various approaches for dealing with CGI in immer-
sive virtual reality environments. In this paper, we report our results
from reviewing techniques used by existing commercial games. We
also discuss how to implement several common techniques, some of
which are our own custom designs. Finally, we report results from
a user study (N=40) where participants rated each technique along
several dimensions and ranked their favorites.

2 RELATED WORK

While a large body of work exists on the subject of detecting and
handling arbitrary collisions in virtual reality, the issue of handling
CGI is comparatively much less explored. The Oculus Rift “Best
Practices Guide” suggests that developers should address the possi-
bility that the user may stick their head through walls, but provides
little guidance for how to do so [8]. Previous work has shown
that, for hand collisions, visual perception dominates proprioception,
and you can trick users into believing their hands are in a different
place [1]. However, this same technique may translate poorly to
camera collisions users would be likely to immediately notice if
their head were in the wrong place, as the head position and eye
positions are rigidly bound. This makes CGI a uniquely challenging
problem in immersive virtual reality — going past a wall could mean
a user gets trapped behind a wall and gets confused, sometimes even
requiring outside assistance to recover [7].

A similar issue appears with non—-immersive 3D applications,
such as Autodesk AutoCAD and the Unity 3D editor. Users who are
not adept at 3D navigation could easily move their camera through
an object when they are trying to get a closer look. One solution to
this use case is to add a rewind button, which allows the user to reset
the camera back to a position it was at earlier [3]. In traditional non-
immersive games, there are three options which are most commonly
used [5]: The Ghost method, where users just pass through walls
freely, is represented by doing nothing. The Clunk method, where
users cannot move if it would put them in a wall, is represented
by our Incremental Push method. The Slip method, where users
can move parallel to and away from the wall, is represented by our
Continuous Push method. Of these, the Slip method is the most



Figure 1: Disruptors — Once the user (Green) passes through the
wall of the virtual room (White), the room disappears, and the user’s
experience suddenly changes.

Figure 2: Anchors — Once the user passes through the virtual room,
the virtual room moves so the user never leaves the room in the first
place. However, the user is now closer to the edge of the real-world
tracking space (Red).

widely used in non-immersive games.

A major issue with translating non-immersive methods to immer-
sive experiences is that they may make users more likely to suffer
from motion sickness, which is theorized to occur when head move-
ment detected by the vestibular senses does not closely match head
movement detected by optical senses [4]. Furthermore, attempting
to persuade the user from not causing CGI is highly application
dependent. For example, one approach is to use haptic feedback to
warn the user of an impending CGI event [6]. Despite such solutions,
no existing solution can fully prevent CGI through haptics.

Thus, for immersive experiences innovative solutions, such as
those that have been presented for avoiding simulator sickness during
joystick movement by lowering field of view [2], are needed that
avoid vestibular-optical conflict. Moreover, generalizable solutions
are desirable.

3 TECHNIQUES

Based on our evaluation of existing games, we implemented 10 gen-
eralizable solutions to the CGI problem. Here we describe how each
was implemented, and discuss potential issues with the techniques.

In all cases, the same general method was used to detect CGIL. An
invisible collision volume (a sphere) was set to follow the tracked
head position of the user each frame. If the capsule intersected any
“wall” geometry during the frame, it was stopped and returned to the
nearest non-colliding point of contact. Whenever the displacement
vector between the tracked head position and the capsule position
became non-zero, the CGI response technique was activated. This
requires that, even if the tracked head position returned to a valid
position, the path to get there must have not been impeded. It also
allows for handling cases where the user’s head is penetrating a
surface, but the eyes are not.

All solutions fall under the following three categories:

The first category, “’Disruptors” (See Fig. 1), change the camera
rendering after passing through a wall. Disruptors are primarily
concerned with maintaining alignment between the real and virtual
space and not providing any new vantage point that would have oth-
erwise been unreachable. They usually will use a return mechanism,
such as an arrow, to instruct users how to return back to the virtual
environment.

Figure 3: Preservers — The user is allowed to pass through the wall,
and can see the virtual room from outside.

Figure 4: As a camera approaches the wall, its pixels darken. Once
the camera is fully past the wall, it is completely black.

The second category, ”Anchors” (See Fig. 2), shift geometry (or
move the user back) to prevent the camera from leaving a valid
location. Unlike disruptors, the virtual environment is not modified.
However, the alignment of the virtual environment with respect to
the real environment may change.

The third category, "Preservers”(See Fig. 3), have properties of
both Anchors and Disruptors. Unlike Anchors, they allow camera to
pass through the wall, but unlike Disruptors, they allow for some,
but not necessarily all, otherwise unreachable viewpoints. They are
primarily concerned with preserving vestibular-optical consistency.

3.1 Fade to Black

Fade to Black (Fig. 4) is the most commonly implemented disruptor
technique. When the head is in collision the cameras begin to fade
to black. As each camera passes through a boundary, it becomes
completely black. This has the advantage of providing a warning,
but never allowing the user to see beyond a wall. It also trivially
handles arbitrary collision surfaces.

To implement Fade to Black, we apply a shader to linearly darken
the image rendered to each eye’s camera. A shader variable controls
darkness by multiplying the RGB components of each rendered pixel
by a value between zero and one, and a script changes this variable
depending on the displacement of cameras during a CGI event.

3.2 Arrow Return Mechanism

One problem with Fade to Black is that users may not know how
to return to a valid point. The Arrow (Fig. 5) technique attempts to
address this problem with a 3D arrow which is always in front of
the user’s view, and always points towards the inside of the virtual
room.

Arrow is implemented similarly to Fade to Black, but additionally
a 3D arrow is rendered such that every frame it moves in front of the
user and rotated to point back into the displaced head object.



Figure 5: Arrow provides an intuitive way to get back into the virtual
room

Figure 6: The ball shows the user where they were last in the virtual
room

3.3 Ball Return Mechanism

Ball (Fig. 6) is another variant of Fade to Black. Once the camera
becomes fully black, a Ball is enabled and shows the user’s last
valid position in the virtual space. Our implementation has the ball
floating by itself, with everywhere else being black. This should

provide less disruption than Arrow Return, but may be less intuitive.

If the user is moved forward through a wall, it will only show black
until the camera is turned around.
The implementation of Ball Return is similar to Arrow. Once

the user passes the wall, the room disappears, leaving a black space.

Additionally, a 3D sphere is enabled to represent the user’s last
position in the room.

3.4 Stop Rendering

The Stop technique is a severe disruptor. Once CGI occurs, the
camera view is no longer updated. This means that, no matter where
the user looks, they will see the same image they saw on the frame
before they passed the wall. This might give the impression that the
room is rotating with the user’s head.

This technique is intentionally unintuitive and disorienting. The
purpose of including this in the experiment was to have a clearly
inferior technique to validate rating scales and provide a basis for
comparison with other techniques.

Stop is simple to implement. When CGI occurs, the camera
rendering is disabled. The result is that, until the user enters the
virtual room again, they will see the same image.

Figure 7: Blur lets users see enough to make out their position in the
virtual world, but stops them from making out fine details.

Figure 8: Ghost allows the camera to pass through the surfaces
unimpeded. This can result in viewing through walls or outside the
rendered environment.

3.5 Blur

Blur (Fig. 7) is a preserver and partial disruptor. When the camera
passes through a wall, the view begins to blur. This provides imme-
diate feedback, telling the user that something has happened, while
still allowing them to see where they are in the virtual space, albeit
not as clearly as before.

Blur is implemented using a full screen shader that activates
during CGI. The shader performs a Gaussian blur on a down sampled
version of the rendered image. An input to the shader controls the
level of blur, such that the blur can be modified to be less severe at
first CGI, gradually becoming blurrier as the displacement vector
increases. However, it would be application specific to control the
blur level appropriately. Thin walls would require more blur than
thick walls to prevent the user from seeing beyond the wall.

3.6 Ghost

As discussed earlier, Ghost (Fig. 8), is both the most common and
easiest to implement Preserver “technique”. In fact, a simple imple-
mentation of ghost requires almost no effort at all on the part of the
developer. Without a collision response, the virtual camera, when
getting close to a surface will first clip wall geometry due to the near
clipping plane. After passing through, while still within the wall,
backface culling will often mean that the user is able to see back into
the room. More complex implementations may fade away geometry
as it is passed through.

A strength of this technique is that it does not impact vestibular-



Figure 9: Left: A user approaching the wall sees a "window” opening
to a different place. Right: The user looks back through the window
and sees the virtual room they came from

optical consistency. The user feels themselves physical move, and so
movement through the virtual wall may be plausible. However, this
technique has severe drawbacks if users are able to get to otherwise
unreachable, undesirable locations by ghosting through walls or to
see things that would otherwise not be visible (e.g. looking beyond
a locked door).

3.7 Window

Window (Fig. 9) is a unique preserver technique inspired by the com-
mercial game Dimensional (http://www.dimensionalgame.com/). As
a user approaches a wall, a circle opens up on the wall, revealing
what lies past the wall. The circle increases in size as the user gets
closer to the wall, until it reaches the size of the user’s head at the
point of intersection.

Once the user is through the wall completely, the circle ("Win-
dow”) stays in place at the same size. They are able to look back
and see the original virtual room through the window, but they can
also look around to see a new environment. This has elements of
a disruptor, although it may be plausible that a white room exists
beyond the virtual wall and an arbitrary room could be rendered
instead of a white room, so it fits more clearly within the preserver
category.

A custom shader was designed to implement Window. It used two
variables to create the circular window — a fixed4, which represents
a position in 3D space, as well as a float, which represented the size
of the window. These two values defined the center and radius of
a sphere. Any fragments rendering within the sphere are discarded.
As such, the the user will see through the circular cross-section of
the sphere. Every frame, the fixed4 value representing the position
of the sphere is updated to the position of the user’s head as long as
they remain inside the room.

There are a few weaknesses with this technique. First, the shape
of the window might not always be the same. This could occur if
the wall’s surface is curved, as the the window might not appear as
a cross-section of a sphere. Or, if the user is approaching a corner,
a window will open from both walls. Finally the technique is more
complex to implement than others, as it requires the custom shader
for every wall in the environment. Furthermore, it requires additional
development time to stop objects beyond the wall from rendering, if
desired, and in the case of complex walls, defining what is beyond
a wall is challenging. One approach to do this could be to perform
araycast through the window, disabling geometry that is not hit by
the cast, or to insert additional clipping planes just beyond the wall.

Figure 10: In Tunnel, the user morphs the shape of the wall

3.8 Tunnel/Rubber Wall

Tunnel (Fig. 10) is a preserver technique that we designed as a
variant on Window that may be more plausible. During a CGI event,
a tunnel encloses a volume from the user’s head to the point of
intersection. The metaphor for this is that the walls are made of
rubber and the user pushes into them This allows the user to turn
around to see the room they entered, giving them a clear route back.
Also, to enhance the illusion, the interior of the tunnel is rendered
with the texture of the wall.

To implement tunnel, the users head is modeled as a sphere with
aradius r. Once the sphere intersects a wall, the tunnel is created
at the point of collision. Firstly, we generate a quad with a depth
mask over the wall, creating the image of a hole in the wall. Then,
we generate another quad of the same size, which is placed on the
sphere at the furthest point into the wall. This quad is given the same
texture and UV coordinates as the section of the wall that is hidden
by the depth mask. Then, we create four more quads to connect both
quads on all sides and create a cube. These four quads are textured
appropriately so that they connect the original wall with the quad
in the back. This makes the transition smoother. The position of
the five interior quads is recalculated every frame to account for the
users head movement.

This implementation currently has challenges dealing with arbi-
trary wall surfaces. First, it has no way to handle corners whichever
surface the sphere hits first is the one it will stay on. Additionally, it
has a similar issue with curved surfaces where it pokes out. Another
issue is that, if the user moves too far parallel to the wall, the quads
will converge, making it possible that the users eyes will actually
be outside the tunnel, destroying the illusion. Our implementation
sufficed for the study, but it may be difficult to generalize.

We also implemented an alternative to this technique that
smoothly deforms all vertices of the wall mesh away from the dis-
placed head. This approach is promising, and generalizable to many
situations if the wall geometry has enough vertices for the appear-
ance of a smooth deformation. This technique is currently quite
computationally expensive for smooth effects, particularly when
many walls are intersected simultaneously.

We chose to implement the earlier approach for the study, as this
was thought to generate a superior effect, but recognizes that the
challenges to its implementation warrant further consideration of the
smooth vertex-deformation metaphor.

3.9 Incremental Push

Incremental push is an Anchor technique that moves the virtual room
by a fixed amount once the user gets close to the wall, so that they
never fully intersect in the first place. This is comparable to the
player teleporting a short distance away from the wall. By doing so,
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Figure 11: A breakdown of the most popular techniques to handle
CGl used in commercial VR games and applications

the user remains in the VR space, instead of ever being out of bounds.
However, this introduces the significant issue of space preservation.
If the VR space is moved, then the danger arises that it could move
too much. If the user is assuming the location of physical walls and
objects in the real environment, this could lead to safety problems.
This technique would be similarly incompatible with passive haptic
techniques such as foam walls or tables in the environment.

In our implementation of Incremental Push, if the user gets too
close to a wall, then the virtual room moves in the direction of
the walls normal by a fixed distance. This handles corners fine,
and works for walls of any size. It would have challenges with
low virtual ceilings or raised platforms, as these would change the
location of the physical floor relative to the virtual floor.

3.10 Continuous Push

Continuous Push is another Anchor technique that is partially space
preserving. Rather than a fixed jump, the virtual space moves over
only as much as the user pushes. It also moves back to the original
space along the same deformation vector. This has two key differ-
ences from Incremental Push: The space only moves until theres
no longer a collision, and the wall will follow the user until they
return back into the space. In doing so, this method avoids the space
preservation problem that incremental push has.

Continuous Push is implemented similarly to Incremental Push,
but instead of a fixed distance, the virtual room moves only as far
as the user pushes in. Additionally, to preserve the VR space, we
keep track of the displacement, and the room moves back along this
vector until it returns to zero in all directions. In our implementation,
this occurs instantaneously, but could also be gradual at the risk of
inducing significant vection.

4 SURVEY OF COMMERCIAL APPLICATIONS

Prior to starting this work and as motivation for it, we recognized
that commercial VR games and applications had begun employing a
variety of techniques to address CGI, many of which we found to
be quite innovative. However, we were unable to find much litera-
ture describing the problem or potential solutions, suggesting that
game designers were using ad hoc solutions. Thus, we performed a
more comprehensive review, surveying 58 unique commercial VR
applications to determine what techniques are the most popular. We
conducted the tests by playing the game and attempting to stick our
head through a virtual wall (if any) in the game and reported on what
technique was used. Applications which did not have easily accessi-
ble walls were excluded from our tests. The overall breakdown of
techniques by game is shown in Fig. 11.

Of the 58 tested, 28 used the ”Ghost”” method, where users can
freely move their head/camera past the wall and see what exists
beyond the wall. In practice, this is likely popular because it is
the default behavior of rendering algorithms if no solution is imple-
mented. All other possible techniques require detecting collision and
changing the experience. While we did not evaluate the potential
impact of this “solution”, we suspect that these games rely on the
general preference of users to not stick their heads through walls.
Other similar techniques were used. Two applications added blurring
of the camera rendering after CGI. Another application changed the
rendering to black and white.

The second most popular technique, which was used by 15 of the
58 applications, was “fade or cut to black”. In this method, once a
collision occurred, the screen either faded to black or cut to black
instantly. This gave the user immediate feedback, but after becoming
black, it was not inherently obvious for the user which way to return
to the room. One application addressed this problem with an arrow
that pointed towards the return trajectory. This provided an intuitive
method telling the user where they should go in order to return
back to non-CGI. Though more involved than ghosting, fading to
black is relatively straightforward to implement with basic collision
detection techniques and a custom camera shader.

The next most popular technique is an adaptation of the ”Slip”
method, and was used by 7 applications in the survey. In this adapta-
tion, if the user moves towards a virtual wall, their movement will
be impeded — they will find themselves moving in the real world,
but against the same wall in the virtual world. In other words, the
component of camera movement in the direction towards the wall
surface is removed.

The fourth most popular technique, which was used by 5 appli-
cations, is similar to the ”Clunk” method. If the user’s movement
would put them past a wall, then the user’s avatar is translated a
short distance in the direction of the wall’s normal vector.

Issues arise from the use of Slip and Chunk, because, when a user
walks around in their real space, under normal circumstances their
avatar in the virtual world undergoes the same movement. However,
if an application uses Slip or Clunk, then this is not necessarily the
case. As this constitutes a vestibular optical conflict, it may increase
the likelihood of simulator sickness. In addition, it creates a problem
of ”’space preservation”. If a user is teleported away from the virtual
wall, while moving towards the real-world tracking boundaries, then
their new resting position will be closer to the tracking boundaries.
Depending on the real-world environment, this could be a nuisance,
if the user loses tracking, or dangerous, if the user runs into a real-
world wall unintentionally.

The final 3 applications used game mechanics to disincentivize
and even incentivize users from colliding with walls. One application
caused the user’s avatar to die, causing a loss of progress, while the
other application, less punishingly, drained the user avatar’s hit
points resource. Lastly, one innovative application had a unique
variant of the Ghost method, where objects close to the user’s head
would “dissolve” and reveal the contents inside. This technique
was very interesting because it provided a more plausible visual
explanation for CGI.

In total, 58 games were chosen from the Steam and Oculus stores.
14 were exclusive to the Oculus Rift, 32 exclusive to the Vive, and 12
were compatible with both. 23 of the applications were free-to-play,
13 of which used the Ghost method, which is roughly the same ratio.
However, 12 of the applications were multiplayer, and only 4 used
the ghost method. This shows that many developers are already wary
of allowing users to have an unfair advantage by looking past walls.

5 USER STUuDY
5.1 Design

To evaluate the techniques, we conducted a user study involving
40 participants from the local student and faculty community of



our University. We used a repeated-measures design, such that
each participant tried every technique, each user tried them in a
different order. As the number of distinct orderings of 10 levels
is enormous, we used a 10 X 10 Latin square ordering rather than
purely random order. This resulted in each order being assigned to
exactly 4 participants.

The virtual environment used for the study was developed using
Unity 3D and was purposely abstract and simple. It was modeled
as an ordinary size room with four identical walls, as well as a floor
and a ceiling. There were no doors, windows, or other openings.
The HTC Vive (1080x1200 pixels per eye, 90Hz, 110° FoV) virtual
reality headset and tracking system was used for the experiment.

Two instruments were designed for the study. The first was a
background survey that participants filled out prior to beginning
the main experimental procedure. Participants self-reported gen-
der, age as well as ownership of phone-based and computer-based
virtual reality systems and experience with gaming, as these as-
pects were hypothesized to be influential in determining the relative
ranking of techniques. The second instrument was filled out by
the experimenter. It included a 3 ratings, each on a scale from 0
(lowest) to 10 (highest), for the ”comfort”, “intuitiveness”, and ~im-
mersion”(presence) of each technique (a total of 30 measurements
for all techniques combined). Participants were also asked to specifi-
cally choose their top 3 and bottom 3 techniques. Participants were
also asked to comment on what they liked or disliked about each
method. We believed it was important to distinguish which methods
were scored higher, versus which methods were users’ favorites. Ad-
ditionally, we computed rankings for each method from participant
ratings to better capture relative differences and reflect better reflect
any consensus among participants. Ratings were sorted from highest
to lowest and then assigned a corresponding ranking of 1 to 10. Ties
at two ranking positions were averaged, such that the sum of all
rankings was always 55 (e.g. a ranking of 1,1,3,4,...) would become
(1.5,1.5,3,4..).

5.2 Procedure

The study procedure was non-standard due to the large number
of methods evaluated and the need to compare methods to each
other reliably. After filling out the background survey, they were
asked to put on the stereoscopic headset. They then were asked to
get comfortable moving around the virtual space. After becoming
acquainted with the motion tracking, the experimenter had the par-
ticipant evaluate each method. The order of first presentation was
determined by the Latin Square, but participants could, at any time,
request to revisit a prior method to make a comparison. In addition,
prior to making any evaluations, participants were shown the first
two methods in their list. We chose to start with two methods to give
participants a better frame of reference for the different methods
they would experience. After providing ratings for the first two, par-
ticipants were shown and asked to rate methods one at a time. Once
participants rated all methods, we asked them choose three favorite
and least favorite methods as described above. Participants could
adjust their ratings at any time and could ask for clarifications about
the experimental variables at any time. This was done to ensure as
accurate of a ranking as possible, limiting recall bias and confusion
about the terms. Note that we used the word “immersion” as the term
for the "feeling of being there”, which was explained to participants,
as it is more commonly known than the term “’presence”.

6 RESULTS

All 40 participants (29M, 11F) tried all ten techniques, and provided
all requested ratings. This resulted in 400 total observations with
independent and dependent variables for participant ID, Method,
Comfort, Intuitiveness, Top3, Bottom3 and computed variables for
Average Rating, Comfort Ranking, Intuitiveness Ranking, Immer-
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Figure 12: Ratings of Each of the three Category for each method,
sorted by average

95% Confidence Interval

Method Mean Std. Error  Lower Bound ~ Upper Bound
Arrow 6.917 .345 6.219 7.615
Ball 6.304 .321 5.655 6.954
BlackFade 6.154 .327 5.493 6.816
BlurFade 5.925 .334 5.249 6.601

ContinuousPush 6.129 .357 5.406 6.852
Ghost 6.621 247 6.120 7121

IncrementalPush 5.592 .352 4.880 6.303
Stop 3.783 401 2.973 4.594
Tunnel 6.254 .300 5.647 6.862
Window 7.283 271 6.735 7.832

Table 1: Average ratings across 3 categories

siveness Ranking, and Average Ranking. Data was primarily ana-
lyzed using IBM SPSS version 24.

Fig. 12 and Table 1 show category ratings for each technique. The
average rating across all techniques was 6.10 (SD 2.53). The average
rating given to techniques rated as a Top3 was 7.55 (SD 1.60), and
the average rating for Bottom3 was 4.67 (SD 2.19). Participants
reported the most favorable ratings for the Window, a preserver,
across all categories (1st in Comfort and Immersion, 2nd in Intuitive-
ness). Arrow, a disruptor, was similarly rated highly across all three
categories, especially Intuitiveness. The only method that received
universally low ratings was Stop, as expected.

Fig. 13 shows how users categorized their favorite techniques.
This was mostly consistent with average ratings. Again, Window was
highly rated, being placed in the top 3 by 21 participants. Arrow was
also highly rated by 19 participants. For bottom 3 groupings, 27 of 40
participants included stop, and 20 participant included incremental
push. The most consensus (difference between top 3 and bottom
3 counts) was for Window (+19), Arrow (+11), and Ghost(+9) on
the positive side and Incremental Push(-15) and Stop(-27) on the
negative side. Others had little consensus (which could also be
indifference) (difference <= 3). Others were all highly mixed, in
particular Tunnel, which was in the top 3 for 12 participants, but the
bottom 3 for 13 participants. Disruptors (except Arrow) all received
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Figure 13: How many users reported each method to be their favorite
(top 3).

10 votes in both categories as well.

Fig. 14 shows the computed average rankings for each method
(inverted relative to previous graphs with 1 highest and 10 lowest).
As with preference groupings, Window, Arrow, and Ghost were all
highly rated. They differed primarily along the “Immersiveness”
variable.

6.1 Analysis

The results suggested a strong preference among participants for
Window and Arrow, with Ghost as an acceptable alternative. To
determine the significance of these ratings, we conducted a repeated
measures ANOVA, using method as the independent factor and aver-
age rating as the dependent factor. Results show a significant main
effect of method (F(9,31)=12.95, Wilks’ Lambda=0.21, p<0.001).
Pairwise comparisons show many significant differences. Window
was rated significantly higher than every method, other than Ar-
row. Arrow was rated significantly higher than Blur Fade (p=0.02),
Incremental Push (p=0.002), and Stop (p<<0.001). Stop was rated
significantly lower than every other method (p<<0.001 in every case).
Incremental Push was better, but significantly lower than Ghost and
Ball.

Further examining the distribution, we can gain a better under-
standing of how methods rank. As seen in Fig. 15, most of the
techniques have a bimodal shape (2 humps). Arrow and Window
have the highest probability of being liked. Stop clearly is disliked
by a majority of users. Those with a bimodal shape may be highly
application specific. Others with a flatter distribution may have less
obvious application.

To qualify our results and analysis, we recorded and transcribed
participants’ conversations during the experiment. Of all partici-
pant’s sentiments, there were six statements shared by at least three
people.

First, 12 participants remarked that they "hated” Stop, because it
was either “disorienting,” confusing,” or just "weird.” Several more
people, while not using the word “hate”, listed stop immediately
after being asked which three methods were their least favorites
(bottom 3).

Next, nine people reported that they initially did not like a partic-
ular technique, but after they knew what to expect they enjoyed it
more. This was most often mentioned with regards to Incremental
Push and Continuous Push, but two people said it in response to
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Figure 14: The average ranking of each method, calculated by user’s
ratings

Figure 15: The rank distribution for each method. Techniques are
listed in alphabetical order, from top-left to bottom-right

Tunnel or Ghost as well.

Eight people reported that they didn’t like the sudden, jarring
differences with Fade to Black and Ball. Interestingly, only one
person reported the same issue with Arrow, which works almost
identically. Three people said that they “’loved” arrow because of
how intuitive it was. They said that they immediately understood
it. Providing immediate feedback may help users identify what is
happening and quickly correct.

Five people said that they thought Window was really cool.”
Additionally, one of the two people who listed Clunk in their top
three said it was because it was cool. Coolness is a factor which is
not represented by any of the three measures we recorded. However,
coolness is certainly a factor that is important to video games, which
represent a growing application category for VR.

Lastly, participant comments revealed that preference for Ghost
may be dependent on what is shown outside of the virtual room.
In our experiment the floor extended past the wall, with nothing
of interest outside except the default skybox. Several participants
reported that they liked Ghost because it was like walking out to a
patio, but this was not intended. It’s likely that users would be less
receptive to Ghost if, for example, there was no floor outside the
Virtual Room.

7 DISCUSSION AND CONCLUSIONS

Our analysis strongly supports that Window and Arrow are the
most effective techniques. Window and Arrow both performed very



well across all metrics. They were rated highly by the majority
of participants, and chosen as favorites more often than any other
technique. These methods are the best candidates for a preserver or
disruptor technique.

Furthermore, while we rated them separately, several of the tech-
niques are compatible with certain aspects of each other. For exam-
ple, Arrow and Ball are additions to Black Fade. Given the popularity
of Arrow, it should likely be the default over Black Fade. Window
is highly compatible with Ghost. Ghost offers little advantage, and
was rated significantly lower than Window. From our results, we
can also conclude that Continuous Push is superior to Incremental
Push, as it both preserves space and is preferred by users. Finally,
we can conclude, with a high degree of certainty, that Stop should
not be used, as we expected.

General guidelines for developers:

* If you want the most comfortable, or the most immersive
experience, use Window.

 If you want an intuitive experience that is easy to implement
and fair, use Arrow.

If keeping the user in the same environment is a concern, use
Continuous Push

 If CGI does not matter, use Ghost, but pay attention to what
lies beyond the outer edges of the environment.

In addition, some techniques may fit better in different experi-
ences. For instance, in a virtual maze, a user would easily be able to
cheat using Ghost, so using some technique is almost necessary to
preserve the maze’s integrity. However, in a horror experience, de-
signers could use CGI as a feature to include cryptic or scary images
in ways that would not fit in other applications. Some applications
may value certain features over others. For example, a single-player
experience might value immersion highly, while a multiplayer appli-
cation would prefer to avoid giving players an advantage. Ultimately,
it becomes the job of the designers to choose how to handle edge
cases like CGI, and we hope that our results provide some clarity on
implementations to pursue.

8 LIMITATIONS AND FUTURE WORK

There are several other possible techniques which we were unable
to test to avoid fatiguing participants, or because of logistics. In
particular, we did not test any game-mechanic-based disruptor tech-
niques such as avatar death, since our environment was not a gaming
application. Other variants we did not include are Continuous Push
without preserving the space, instant black (versus fade to black),
and a modified Ghost based on the circle Window with no secondary
environment (in our case a white room). Our population may also
not be predictive of the general population, as they were mostly
Engineering students and faculty.

Additionally, we did not test in a more realistic environment. Our
experiment environment was very sterile to keep users focused on
the task and techniques rather than the experience. This empowered
our study to find differences between the techniques. As a result, the
relative value to an application’s goals can not be determined from
our study. It’s also possible that contextualizing CGI would change
user’s perception on the different techniques handling them. This
is especially true for a multiplayer experience, where users could
potentially get an unfair advantage by peeking through a wall.

Furthermore, we did not evaluate how often users would stick
their heads through virtual walls in the first place. We suspect that
this is quite low, given results from other experiments that showed a
high degree of collision avoidance in walk-around virtual reality [9].
The default solution, Ghost, may be the most comfortable and easiest
for users.

To follow up on this study, we would like to test users’ opin-
ions of Ghost with different background environments (the “’patio”
comments we received). This could also apply to Window well, as
providing a pleasing (or displeasing) view “inside” or beyond the
walls is an intriguing concept.
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