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ABSTRACT 

In this paper, we propose a method for recognition and pose 

estimation of primitive shapes from depth images for spatial 

augmented reality (SAR). To use SAR in our everyday life, 

technology to recognize and estimate the pose of projected objects 

in the room is necessary. However, it is not a simple task to 

recognize primitive shapes because of their low 3D feature values. 

Hence, we focused on the gradient of normal vector map to 

extract surfaces and used the information of the surfaces of each 

object to recognize target objects. With our method, it becomes 

possible to recognize and estimate the pose of target objects in 

various scenes. Additionally, we projected an image onto each of 

the surfaces of the physical objects.  

Keywords: spatial augmented reality, pose estimation, object 
recognition, RGB-D Camera. 
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1 INTRODUCTION 

Spatial augmented reality (SAR) is a technology to render 

arbitrary textures with the correct perspective onto the surface of 

3D objects by projectors so that we can deal with virtual objects in 

a physical environment for 3D user interfaces. By replacing 

general purpose luminaires with image projectors, we can use 

SAR technologies for everyday life in our living room. One of the 

important technologies for adapting SAR to such everyday-life 

applications is recognition and estimation of poses of target 

objects in the living room so that the SAR system can render the 

required textures onto the target objects. Here, we focus on 

technology of detection, recognition, and localization of target 

objects by using cameras without putting any positioning sensors 

and markers on each target object. For achieving this purpose, we 

use a depth camera to capture 3D shape information of the target 

scene for recognition and pose estimation of the target object.  

Even from the depth images, target object recognition and pose 

estimation are not easy tasks, and they have been extensively 

studied for over 10 years. There are various approaches to the 

object recognition problem. For instance, Rusu et al. proposed 

point feature histograms (PFHs) as multi-dimensional features 

that describe the relationship of two normal vectors around a point 

for a 3D point cloud [7], while Tombari et al. proposed signatures 

of histograms of orientations (SHOT) as features that describe 

surface matching by computing the dot product of normal vectors 

[6]. According to such related investigations, we consider that 

using a normal vector map computed from the input depth image 

is very important for adapting arbitrary poses and positions of the 

target objects. Sano et al. [1] proposed a method of pose 

estimation of cubes for spatial augmented reality by efficient 

planar region detection using RGB-D superpixel segmentation. 

In this paper, we propose a method for recognition and pose 

estimation from captured depth images by depth cameras such as 

Kinect. For efficiently performing the recognition and pose 

estimation procedure, we assume that the target objects consist of 

a set of primitive shapes, such as cubes, cuboids, cylinders, and 

pyramids. By such an assumption, we can define models of each 

object by a set of relative angles between neighboring sub-planar 

surfaces, which may be effectively segmented by images of 

normal vector directions of each point in the input depth images.  

According to such representation for each target object shape, the 

object shape may be recognized independently from its pose.  

Because the normal vector direction of each sub-planar surface 

can easily be estimated, the pose of the object can also easily be 

estimated. Since our method can recognize and estimate pose 

without using any texture information of the object surface, we 

can render arbitrary texture images onto white objects by 

projectors. By such projection, we can interactively change the 

rendered textures. 
 

2 PROPOSED METHOD 

2.1 Approach 

As previously mentioned, to use the feature value of a normal 

vector to recognize an object, the object must be a complicated 

shape; therefore, objects that have a low number of feature points, 

like cubes, pyramids, and cylinders, are not able to be recognized 

in various scenes where one object gets on top of another. Our 

proposed method focuses on a surface that is a component of 

target objects. In this work, we use cubes, pyramids, cuboids, and 

cylinders as target objects. To recognize target objects, we store 

the surface information of each target object. For instance, in the 

case of a cylinder, we store the variance of the curved surface, the 

height, and the radius. In the case of a cube, the angle between 

surfaces and the length of the side is stored. We use this surface 

information to recognize each target object. 

2.2 Overview 

Our proposed method is divided into four main steps: 1) noise 

reduction, 2) surface segmentation, 3) object recognition using 

surface information, and 4) pose estimation. Figure 1 provides an 

overview of the process.  
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Figure 1: Overview of our proposed method 

 

2.3 Noise Reduction 

We use a Microsoft Kinect v.2 for the RGB-D camera in this 

investigation. The Kinect v.2 measures the depth value by ToF 

(time of flight). The ToF method acquires depth values by 

determining the time between the infrared light being emitted and 

the reflected light being detected. A ToF sensor uses two features 

of noise. The first is that the depth value near the edge of an object 

is inaccurate. The second is that the depth value at each frame is 

unstable. To reduce the first form of noise, a median filter is 

applied to the raw depth image information. Moreover, to reduce 

the second form of noise, we apply a temporal mean filter, 

averaging depth values of all individual pixels within n frames.  

2.4 Surface Segmentation 

The second step of our method is to extract surfaces from raw 

depth images. The general approach to extract a plane from a 3D 

point cloud is to apply either a least-square method, PCA, or 

RANSAC algorithm to find the most likely parameters [4], [5]. 

However, when trying to extract a surface using all points, the 

points near object edges are likely to be recognized as the wrong 

surface. Therefore, our method uses the idea from Uckermann et 

al.’s method [2]. We take three steps to extract a surface from a 

raw depth image.  

    In the first step, we compute the normal vector of each 3D point. 

Four neighborhood points in the depth image are considered to 

compute a normal vector. We compute four classical cross 

products of a point: left and up, up and right, right and down, and 

down and left. We then average these four computed vectors and 

repeat this process for all points to obtain normal vectors for all 

points. Figure 2(a) is an image depicting the direction of the 

normal vectors XYZ that are converted into a RGB pseudo-color 

space.  

    The second step focuses on the gradient of normal vector map; 

we compute the scalar product of normal vectors. We look for 

eight neighborhood pixels of a point. At each point and its 

neighborhood pixel, we compute the scalar product of normal 

vectors. The pixel value of each point is calculated by averaging 

eight scalar products. After calculating each pixel value, the image 

is converted into a binary image by using the threshold value 

𝜃𝑚𝑎𝑥 = 5.5° . Figure 2(b) illustrates the gradient image of the 

normal vectors. 

    For the last step of segmenting surfaces from the gradient 

image, we apply a region growing algorithm. If the conditions of 

eight neighborhood pixels of a point are correct, the region 

growing algorithm labels the pixels as the same region as the 

point. This process is repeated until all of the pixels are labeled. 

Figure 2(c) shows a set of segmented surfaces with each surface 

point represented by a unique patch ID.  

    To facilitate the object recognition phase, we compute the 

equation of each surface. We use the RANSAC algorithm to 

calculate the parameter. The RANSAC algorithm is a method to 

calculate all the parameters in the data except outliers. 

 
 
 
 
 
 
  (a) Normal vector map (b) gradient image     (c) segmented image 
 

Figure 2: Surface extraction using gradient image: (a) direction of 
normal vectors XYZ are converted into RGB pseudo-color space, 
(b) using eight neighborhood pixels, dot product is computed and 
binarized by threshold value, and (c) surface segment image is 

created using region growing algorithm.  

    

2.5 Object Recognition 

In this section, the surface segmented image from the previous 

phase is used, and we recognize each target object from the 

component surfaces that make up a target object. As previously 

mentioned, we recognize the target object with already known 

surface information. We take three steps to find each object from 

the segmented image. The first step is focusing on the variance of 

surfaces to recognize cylinders, the second step is focusing on the 

angles between neighborhood surfaces to recognize pyramids, and 

the last step is focusing on the Euclidean distance to recognize 

cubes and cuboids.  

 In the first step, the variance of normal vectors whose points are 

composed of the curved surface of a cylinder is larger than that of 

any other surfaces. Hence, we compare the variance of the side of 

the cylinder from surface information with that of the surface 

extracted in Section 2.4.  

    In the second step, we recognize pyramids and other shapes 

(cubes, cuboids). In this step, we focus on the angles between 

surfaces that exist in the neighborhood of the shapes. In this work, 

the lengths of the sides of the target objects are within 20 cm. 

After calculating the centroid of each surface using the equation 

of surfaces computed in the previous step, we compute the angle 

between surfaces only when the distance between centroids are 

within 20 cm. Finally, we compare the angles between the 

surfaces with the angles of surface information we stored before. 

To do this, we determine which surfaces are components of 

pyramids and cubes from the surface segment image. In this step, 

we do not recognize cubes and cuboids. 

    In the last step, we recognize cubes and cuboids from the 

surface segment image. If we capture the scene with one RGB-D 

camera, it is difficult to capture four surfaces of a cube. Hence, 

this step will run only when the number of surfaces recognized as 

a cube in the previous step is more than four. Three steps are taken 

to recognize cubes and cuboids using Euclidean distance. In the 

first step, we divide the group of surfaces into two groups 

arbitrarily. In the next step, we calculate the centroid of each 

group of surfaces, which is defined in the previous step. In the last 

step, we calculate the distance 𝑑𝑖  between the centroids of two 

groups.  

2.6 Pose Estimation 

After recognizing each object, we finally estimate each object’s 

6DoF pose. To estimate it, we have to compute the transform 

matrix from an object coordinate that is defined at each target 

object transform it to a camera coordinate. Figure 3 depicts the 

pose estimation. The transform matrix consists of a rotation 

matrix and translation vector.  

 



 
Figure 3: Pose estimation 

 

   The transform matrix of the polyhedron is uniquely determined. 

In contrast, the transform matrix of the cylinder is not uniquely 

determined. Therefore, the transform matrix must be calculated at 

each shape. 

    We compute the rotation matrix of the polyhedron. In this work, 

we take particular note of normal vectors of surfaces. To compute 

the rotation matrix, the correspondence relationship of three 

normal vectors is needed. Therefore, two normal vectors of the 

polyhedron’s surfaces and a normal vector of the floor are chosen 

to compute the rotation matrix. Next, we compute the translation 

vector of the polyhedron. To compute it, we find the origin of 

each coordinate at the camera coordinate. The origin is defined as 

the point of intersection among two side surfaces of each 

polyhedron and the floor. However, as the case where the target 

object gets on top of the other target object is included in this 

work, the translation vector using the floor surface cannot be 

computed correctly. Hence, the centroid of each object is 

calculated by the centroids of the surfaces to determine whether 

the target object gets on top of another object. If it gets on top of 

another, we re-calculate its translation vector by translating the 

surface floor toward the direction of the floor’s normal vector.  

    After that, we compute the rotation matrix of the cylinder. The 

three rotational components are needed to calculate the rotation 

matrix. The first component is the direction of the cylindrical axis. 

The second component is the vector that is parallel to the tangent 

line of the floor surface. The last component is a vector that is the 

cross product of the first and the second component vector. Using 

these three vectors, the rotation matrix is calculated in the same 

way as for the polyhedron. Next, we compute the translation 

vector of the cylinder. Like the polyhedron’s translation vector, 

the origin of the object coordinate is found to compute the 

translation vector of the cylinder. The origin is defined at the 

intersection point of the cylindrical axis and its base. However, 

that point cannot be captured by camera. Hence, we compute that 

point using the side curved surface. As we look at a point of the 

side, we translate that point toward the opposite direction of its 

normal vector. Then, all of the points are in the direction of the 

cylindrical axis. Finally, the centroid is computed using these 

points and is translated to the base.  

 

3 EXPERIMENT 

Three experiments were conducted to show the effectiveness of 

our method. First, we displayed the object coordinates that were 

defined by each object to show the result of pose estimation. 

Second, we projected the shape line of each object using a 

projector to show the result of object recognition. Finally, we 

evaluated the pose estimation of our method. All of the 

experiments were performed with the following system: CPU – 

Intel Core i7-4790 3.60 GHz, RAM – 8.00 GB, RGB-D camera – 

Microsoft Kinect v2.0 (512 x 424), and projector – Epson EB-W8 

(1280 x 1024). Figure 4 depicts our experimental setup.  

 

 
Figure 4: Experimental setup 

 

3.1 Result of Pose Estimation 

We experimented on qualitative evaluation of pose estimation in 

the scene where four target objects are set on the floor or one 

objects gets on top of another object in various scenes. To 

evaluate quality, we displayed each object coordinate. Figure 5 

depicts the result of pose estimation.  

 

 
Figure 5: Result of pose estimation 

 

It is shown in Figure 5 that the pose of each target object was 

estimated in the case of objects that are set on the floor or one 

object gets on top of another in various ways. For instance, pose 

was estimated in the case where the cylinder got on top of the 

cube and the case where the pyramid got on top of the cuboid, as 

shown in Figure 5, bottom right. 

 

 

3.2 Result of Recognition 

In this section, we projected the image at each target object to see 

the result of recognition and pose estimation. Figure 6 illustrates 

the result of object recognition and pose estimation using our 

proposed method.  

 



 
Figure 6: Result of object recognition 

 

3.3 Accuracy Evaluation 

To evaluate the pose estimation of our proposed method, we 

compared the rotation matrix and translation vector with ground 

truth.  

We used the Riemannian distance to calculate the rotation error 

between two rotation matrices. The Riemannian distance between 

two rotation matrices has been defined by Moakher [3]. Moreover, 

we used the Euclidean distance to calculate the translation error 

between two translation matrices. Figure 7 illustrates the average 

error of pose estimation at each object. 

 

 
Figure 7: Average Error of Pose Estimation 

 

    As shown in Figure 7, the translation error of each object fell 

within the range of 1 cm except for the cylinder, and the rotation 

error of each object fell within the range of 10°  at all target 

objects. The reason for the translation error is the rotation matrix 

of the polyhedron was calculated by its surfaces, but the rotation 

matrix of the cylinder was calculated by its curved surface points. 

This may cause an error of approximately 1.4 cm in the translation 

vector.  

4 LIMITATION 

In this section, we state the limitation of our proposed method. 
As we previously mentioned, we used two side surfaces to 
compute the shape’s translation vector. Hence, in the case where 
two side surfaces are not able to be detected (e.g. cube and cuboid 
connected horizontally, or target object facing directly forward to 
the camera), the translation vector is not calculated by our 
proposed method. To overcome this limitation, we have to 
calculate the translation vector using two voluntary surfaces of 
target objects.  

 

5 FUTURE PLAN  

We are planning on implementing a number of extensions to 

improve the system. First, the current system is restricted to a 

single copy of each of the four shapes. In the future, the system 

would be able to process multiple copies of each of the physical 

shapes. This capability would greatly enhance the functionality of 

the system. We would also like to extend the range of shapes the 

system can recognize. Second, we would like to configure the 

system to operate as a standalone tracking system. This will 

enable the system to operate with other rendering systems and 

applications. We will investigate the use of a common tracker 

abstraction mechanism, such as VRPN. 
Finally, we would like to evaluate the tracking technique in 
relation to a real world application. We are targeting the domain of 
industrial design prototyping. The unadorned white shapes lend 
themselves to rendering and allow designers to configure multiple 
potential design concepts. Textures for the shapes could be either 
rendered from the designers’ existing suite of design applications 
or by a custom application that could be developed to allow the 
designers to directly adorn the white shapes with virtual paint. The 
physical nature of the white shapes allows for the designers to 
quickly configure multiple design concepts. Working with 
industrial designers inspired this future application vision. 

6 CONCLUSION 

We proposed a method to estimate the pose of target objects for 

spatial augmented reality. In our proposal, depth data from an 

RGB-D camera is divided into surface regions by focusing on the 

gradient of normal vector map. Using surface information, we 

recognize each target object. Finally, we estimate the pose of each 

target object in various scenes where one shape gets on top of 

another. 
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