
Recognition and Pose Estimation of Primitive Shapes

from Depth Images for Spatial Augmented Reality

Ryo Hachiuma1 and Hideo Saito2

University of Keio

ABSTRACT

In this paper, we propose a method for recognition and pose

estimation of primitive shapes from depth images for spatial

augmented reality (SAR). To use SAR in our everyday life,

technology to recognize and estimate the pose of projected objects

in the room is necessary. However, it is not a simple task to

recognize primitive shapes because of their low 3D feature values.

Hence, we focused on the gradient of normal vector map to

extract surfaces and used the information of the surfaces of each

object to recognize target objects. With our method, it becomes

possible to recognize and estimate the pose of target objects in

various scenes. Additionally, we projected an image onto each of

the surfaces of the physical objects.

Keywords: spatial augmented reality, pose estimation, object
recognition, RGB-D Camera.

Index Terms: mixed / augmented reality, object recognition

1 INTRODUCTION

Spatial augmented reality (SAR) is a technology to render

arbitrary textures with the correct perspective onto the surface of

3D objects by projectors so that we can deal with virtual objects in

a physical environment for 3D user interfaces. By replacing

general purpose luminaires with image projectors, we can use

SAR technologies for everyday life in our living room. One of the

important technologies for adapting SAR to such everyday-life

applications is recognition and estimation of poses of target

objects in the living room so that the SAR system can render the

required textures onto the target objects. Here, we focus on

technology of detection, recognition, and localization of target

objects by using cameras without putting any positioning sensors

and markers on each target object. For achieving this purpose, we

use a depth camera to capture 3D shape information of the target

scene for recognition and pose estimation of the target object.

Even from the depth images, target object recognition and pose

estimation are not easy tasks, and they have been extensively

studied for over 10 years. There are various approaches to the

object recognition problem. For instance, Rusu et al. proposed

point feature histograms (PFHs) as multi-dimensional features

that describe the relationship of two normal vectors around a point

for a 3D point cloud [7], while Tombari et al. proposed signatures

of histograms of orientations (SHOT) as features that describe

surface matching by computing the dot product of normal vectors

[6]. According to such related investigations, we consider that

using a normal vector map computed from the input depth image

is very important for adapting arbitrary poses and positions of the

target objects. Sano et al. [1] proposed a method of pose

estimation of cubes for spatial augmented reality by efficient

planar region detection using RGB-D superpixel segmentation.

In this paper, we propose a method for recognition and pose

estimation from captured depth images by depth cameras such as

Kinect. For efficiently performing the recognition and pose

estimation procedure, we assume that the target objects consist of

a set of primitive shapes, such as cubes, cuboids, cylinders, and

pyramids. By such an assumption, we can define models of each

object by a set of relative angles between neighboring sub-planar

surfaces, which may be effectively segmented by images of

normal vector directions of each point in the input depth images.

According to such representation for each target object shape, the

object shape may be recognized independently from its pose.

Because the normal vector direction of each sub-planar surface

can easily be estimated, the pose of the object can also easily be

estimated. Since our method can recognize and estimate pose

without using any texture information of the object surface, we

can render arbitrary texture images onto white objects by

projectors. By such projection, we can interactively change the

rendered textures.

2 PROPOSED METHOD

2.1 Approach

As previously mentioned, to use the feature value of a normal

vector to recognize an object, the object must be a complicated

shape; therefore, objects that have a low number of feature points,

like cubes, pyramids, and cylinders, are not able to be recognized

in various scenes where one object gets on top of another. Our

proposed method focuses on a surface that is a component of

target objects. In this work, we use cubes, pyramids, cuboids, and

cylinders as target objects. To recognize target objects, we store

the surface information of each target object. For instance, in the

case of a cylinder, we store the variance of the curved surface, the

height, and the radius. In the case of a cube, the angle between

surfaces and the length of the side is stored. We use this surface

information to recognize each target object.

2.2 Overview

Our proposed method is divided into four main steps: 1) noise

reduction, 2) surface segmentation, 3) object recognition using

surface information, and 4) pose estimation. Figure 1 provides an

overview of the process.

1ryo-hachiuma@hvrl.ics.keio.ac.jp
2hs@keio.jp

Figure 1: Overview of our proposed method

2.3 Noise Reduction

We use a Microsoft Kinect v.2 for the RGB-D camera in this

investigation. The Kinect v.2 measures the depth value by ToF

(time of flight). The ToF method acquires depth values by

determining the time between the infrared light being emitted and

the reflected light being detected. A ToF sensor uses two features

of noise. The first is that the depth value near the edge of an object

is inaccurate. The second is that the depth value at each frame is

unstable. To reduce the first form of noise, a median filter is

applied to the raw depth image information. Moreover, to reduce

the second form of noise, we apply a temporal mean filter,

averaging depth values of all individual pixels within n frames.

2.4 Surface Segmentation

The second step of our method is to extract surfaces from raw

depth images. The general approach to extract a plane from a 3D

point cloud is to apply either a least-square method, PCA, or

RANSAC algorithm to find the most likely parameters [4], [5].

However, when trying to extract a surface using all points, the

points near object edges are likely to be recognized as the wrong

surface. Therefore, our method uses the idea from Uckermann et

al.’s method [2]. We take three steps to extract a surface from a

raw depth image.

 In the first step, we compute the normal vector of each 3D point.

Four neighborhood points in the depth image are considered to

compute a normal vector. We compute four classical cross

products of a point: left and up, up and right, right and down, and

down and left. We then average these four computed vectors and

repeat this process for all points to obtain normal vectors for all

points. Figure 2(a) is an image depicting the direction of the

normal vectors XYZ that are converted into a RGB pseudo-color

space.

 The second step focuses on the gradient of normal vector map;

we compute the scalar product of normal vectors. We look for

eight neighborhood pixels of a point. At each point and its

neighborhood pixel, we compute the scalar product of normal

vectors. The pixel value of each point is calculated by averaging

eight scalar products. After calculating each pixel value, the image

is converted into a binary image by using the threshold value

𝜃𝑚𝑎𝑥 = 5.5° . Figure 2(b) illustrates the gradient image of the

normal vectors.

 For the last step of segmenting surfaces from the gradient

image, we apply a region growing algorithm. If the conditions of

eight neighborhood pixels of a point are correct, the region

growing algorithm labels the pixels as the same region as the

point. This process is repeated until all of the pixels are labeled.

Figure 2(c) shows a set of segmented surfaces with each surface

point represented by a unique patch ID.

 To facilitate the object recognition phase, we compute the

equation of each surface. We use the RANSAC algorithm to

calculate the parameter. The RANSAC algorithm is a method to

calculate all the parameters in the data except outliers.

 (a) Normal vector map (b) gradient image (c) segmented image

Figure 2: Surface extraction using gradient image: (a) direction of
normal vectors XYZ are converted into RGB pseudo-color space,
(b) using eight neighborhood pixels, dot product is computed and
binarized by threshold value, and (c) surface segment image is

created using region growing algorithm.

2.5 Object Recognition

In this section, the surface segmented image from the previous

phase is used, and we recognize each target object from the

component surfaces that make up a target object. As previously

mentioned, we recognize the target object with already known

surface information. We take three steps to find each object from

the segmented image. The first step is focusing on the variance of

surfaces to recognize cylinders, the second step is focusing on the

angles between neighborhood surfaces to recognize pyramids, and

the last step is focusing on the Euclidean distance to recognize

cubes and cuboids.

 In the first step, the variance of normal vectors whose points are

composed of the curved surface of a cylinder is larger than that of

any other surfaces. Hence, we compare the variance of the side of

the cylinder from surface information with that of the surface

extracted in Section 2.4.

 In the second step, we recognize pyramids and other shapes

(cubes, cuboids). In this step, we focus on the angles between

surfaces that exist in the neighborhood of the shapes. In this work,

the lengths of the sides of the target objects are within 20 cm.

After calculating the centroid of each surface using the equation

of surfaces computed in the previous step, we compute the angle

between surfaces only when the distance between centroids are

within 20 cm. Finally, we compare the angles between the

surfaces with the angles of surface information we stored before.

To do this, we determine which surfaces are components of

pyramids and cubes from the surface segment image. In this step,

we do not recognize cubes and cuboids.

 In the last step, we recognize cubes and cuboids from the

surface segment image. If we capture the scene with one RGB-D

camera, it is difficult to capture four surfaces of a cube. Hence,

this step will run only when the number of surfaces recognized as

a cube in the previous step is more than four. Three steps are taken

to recognize cubes and cuboids using Euclidean distance. In the

first step, we divide the group of surfaces into two groups

arbitrarily. In the next step, we calculate the centroid of each

group of surfaces, which is defined in the previous step. In the last

step, we calculate the distance 𝑑𝑖 between the centroids of two

groups.

2.6 Pose Estimation

After recognizing each object, we finally estimate each object’s

6DoF pose. To estimate it, we have to compute the transform

matrix from an object coordinate that is defined at each target

object transform it to a camera coordinate. Figure 3 depicts the

pose estimation. The transform matrix consists of a rotation

matrix and translation vector.

Figure 3: Pose estimation

 The transform matrix of the polyhedron is uniquely determined.

In contrast, the transform matrix of the cylinder is not uniquely

determined. Therefore, the transform matrix must be calculated at

each shape.

 We compute the rotation matrix of the polyhedron. In this work,

we take particular note of normal vectors of surfaces. To compute

the rotation matrix, the correspondence relationship of three

normal vectors is needed. Therefore, two normal vectors of the

polyhedron’s surfaces and a normal vector of the floor are chosen

to compute the rotation matrix. Next, we compute the translation

vector of the polyhedron. To compute it, we find the origin of

each coordinate at the camera coordinate. The origin is defined as

the point of intersection among two side surfaces of each

polyhedron and the floor. However, as the case where the target

object gets on top of the other target object is included in this

work, the translation vector using the floor surface cannot be

computed correctly. Hence, the centroid of each object is

calculated by the centroids of the surfaces to determine whether

the target object gets on top of another object. If it gets on top of

another, we re-calculate its translation vector by translating the

surface floor toward the direction of the floor’s normal vector.

 After that, we compute the rotation matrix of the cylinder. The

three rotational components are needed to calculate the rotation

matrix. The first component is the direction of the cylindrical axis.

The second component is the vector that is parallel to the tangent

line of the floor surface. The last component is a vector that is the

cross product of the first and the second component vector. Using

these three vectors, the rotation matrix is calculated in the same

way as for the polyhedron. Next, we compute the translation

vector of the cylinder. Like the polyhedron’s translation vector,

the origin of the object coordinate is found to compute the

translation vector of the cylinder. The origin is defined at the

intersection point of the cylindrical axis and its base. However,

that point cannot be captured by camera. Hence, we compute that

point using the side curved surface. As we look at a point of the

side, we translate that point toward the opposite direction of its

normal vector. Then, all of the points are in the direction of the

cylindrical axis. Finally, the centroid is computed using these

points and is translated to the base.

3 EXPERIMENT

Three experiments were conducted to show the effectiveness of

our method. First, we displayed the object coordinates that were

defined by each object to show the result of pose estimation.

Second, we projected the shape line of each object using a

projector to show the result of object recognition. Finally, we

evaluated the pose estimation of our method. All of the

experiments were performed with the following system: CPU –

Intel Core i7-4790 3.60 GHz, RAM – 8.00 GB, RGB-D camera –

Microsoft Kinect v2.0 (512 x 424), and projector – Epson EB-W8

(1280 x 1024). Figure 4 depicts our experimental setup.

Figure 4: Experimental setup

3.1 Result of Pose Estimation

We experimented on qualitative evaluation of pose estimation in

the scene where four target objects are set on the floor or one

objects gets on top of another object in various scenes. To

evaluate quality, we displayed each object coordinate. Figure 5

depicts the result of pose estimation.

Figure 5: Result of pose estimation

It is shown in Figure 5 that the pose of each target object was

estimated in the case of objects that are set on the floor or one

object gets on top of another in various ways. For instance, pose

was estimated in the case where the cylinder got on top of the

cube and the case where the pyramid got on top of the cuboid, as

shown in Figure 5, bottom right.

3.2 Result of Recognition

In this section, we projected the image at each target object to see

the result of recognition and pose estimation. Figure 6 illustrates

the result of object recognition and pose estimation using our

proposed method.

Figure 6: Result of object recognition

3.3 Accuracy Evaluation

To evaluate the pose estimation of our proposed method, we

compared the rotation matrix and translation vector with ground

truth.

We used the Riemannian distance to calculate the rotation error

between two rotation matrices. The Riemannian distance between

two rotation matrices has been defined by Moakher [3]. Moreover,

we used the Euclidean distance to calculate the translation error

between two translation matrices. Figure 7 illustrates the average

error of pose estimation at each object.

Figure 7: Average Error of Pose Estimation

 As shown in Figure 7, the translation error of each object fell

within the range of 1 cm except for the cylinder, and the rotation

error of each object fell within the range of 10° at all target

objects. The reason for the translation error is the rotation matrix

of the polyhedron was calculated by its surfaces, but the rotation

matrix of the cylinder was calculated by its curved surface points.

This may cause an error of approximately 1.4 cm in the translation

vector.

4 LIMITATION

In this section, we state the limitation of our proposed method.
As we previously mentioned, we used two side surfaces to
compute the shape’s translation vector. Hence, in the case where
two side surfaces are not able to be detected (e.g. cube and cuboid
connected horizontally, or target object facing directly forward to
the camera), the translation vector is not calculated by our
proposed method. To overcome this limitation, we have to
calculate the translation vector using two voluntary surfaces of
target objects.

5 FUTURE PLAN

We are planning on implementing a number of extensions to

improve the system. First, the current system is restricted to a

single copy of each of the four shapes. In the future, the system

would be able to process multiple copies of each of the physical

shapes. This capability would greatly enhance the functionality of

the system. We would also like to extend the range of shapes the

system can recognize. Second, we would like to configure the

system to operate as a standalone tracking system. This will

enable the system to operate with other rendering systems and

applications. We will investigate the use of a common tracker

abstraction mechanism, such as VRPN.
Finally, we would like to evaluate the tracking technique in
relation to a real world application. We are targeting the domain of
industrial design prototyping. The unadorned white shapes lend
themselves to rendering and allow designers to configure multiple
potential design concepts. Textures for the shapes could be either
rendered from the designers’ existing suite of design applications
or by a custom application that could be developed to allow the
designers to directly adorn the white shapes with virtual paint. The
physical nature of the white shapes allows for the designers to
quickly configure multiple design concepts. Working with
industrial designers inspired this future application vision.

6 CONCLUSION

We proposed a method to estimate the pose of target objects for

spatial augmented reality. In our proposal, depth data from an

RGB-D camera is divided into surface regions by focusing on the

gradient of normal vector map. Using surface information, we

recognize each target object. Finally, we estimate the pose of each

target object in various scenes where one shape gets on top of

another.

ACKNOWLEDGEMENTS

This work was supported in part by JSPS Grant-in-Aid for

Scientific Research(S) 24220004.

REFERENCES

[1] Masayuki Sano, Kazuki Matsumoto, Bruce H. Thomas, Hideo

Saito, Rubix: Dynamic Spatial Augmented Reality by Extraction of
Plane Regions with a RGB-D Camera, Proceedings of 2015 IEEE
International Symposium on Mixed and Augmented Reality, pp.

148–151, 2015.
[2] Andre Uckermann, Robert Haschke, and Helge Ritter. ``Real-time

3D Segmentation of Cluttered Scenes for Robot Grasping."

Humanoid Robots (Humanoids 2012), pp. 198–203, 2012.
[3] Maher Moakher. ``Means and Averaging in the Group of

Rotations." SIAM journal on matrix analysis and applications 24.1

pp. 1–16, 2002.
[4] Edward Castillo, Jian Liang, and Hongkai Zhao. ``Point Cloud

Segmentation and Denoising via Cnstrained Nonlinear Least

Squares Normal Estimates." Innovations for Shape Analysis.
Springer Berlin Heidelberg, pp. 283–299, 2013.

[5] Radu B. Rusu, et al. ``Close-Range Scene Segmentation and

Reconstruction of 3D Point Cloud Maps for Mobile Manipulation
in Domestic Environments." Intelligent Robots and Systems,
(IROS 2009), pp. 1 6, 2009.

[6] Federico Tombari, Samuele Salti, and Luigi Di Stefano. "Unique
signatures of histograms for local surface description." Computer
Vision–ECCV 2010. Springer Berlin Heidelberg, pp. 356–369,

2010.
[7] Radu B. Rusu, et al. "Aligning point cloud views using persistent

feature histograms." Intelligent Robots and Systems, (IROS 2008),

pp. 3384–3391, 2008.

